
SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

i

SOFTWARE COMMUNICATIONS ARCHITECTURE

SPECIFICATION

USER'S GUIDE

30 November 2015

Version: 4.1<DRAFT>

Prepared by:

Joint Tactical Networking Center

33000 Nixie Way

San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (30 NOV 15)

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

ii
Distribution Statement on the Cover Page applies to all pages of this document.

REVISION SUMMARY

Version Revision

0.3 Initial Release

1.0 SCA 4.0 Release

4.1<DRAFT>
Terminology updated and sections added to correspond to SCA 4.1 Release.

Version number updated to correspond with SCA release.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

iii
Distribution Statement on the Cover Page applies to all pages of this document.

TABLE OF CONTENTS

1 SCOPE .. 8

1.1 Informative References .. 8

2 SCA INTRODUCTION .. 9

2.1 Separation of Waveform and Operating Environment ... 9

2.2 Operating Environment ... 9

2.2.1 Application Environment Profiles .. 9

2.2.2 Middleware and Data Transfer ... 10

2.3 JTNC Application Program Interfaces ... 10

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY INFORMATION 12

3.1 SCA Features ... 12

3.1.1 Push model .. 12

3.1.1.1 Overview .. 12

3.1.1.2 External framework management .. 13

3.1.1.3 Registered and obtainable provides ports .. 14

3.1.2 Enhanced Application Connectivity ... 16

3.1.2.1 Background .. 16

3.1.3 Nested applications ... 17

3.1.3.1 Use cases for nested applications ... 17

3.1.3.2 How nested applications work in SCA .. 18

3.1.4 Application Interconnection ... 20

3.1.4.1 Overview .. 20

3.1.4.2 Use case for interconnecting applications ... 21

3.1.4.3 Application interconnection design ... 21

3.1.4.4 Application interconnection implementation ... 21

3.1.4.5 ApplicationFactoryComponent support for interconnected applications 22

3.1.5 Enhanced allocation property support .. 23

3.1.5.1 Overview .. 23

3.1.5.2 Descriptor structure for nested applications .. 23

3.1.5.3 SCA Enhanced Allocation Properties .. 24

3.1.5.4 SCA Dependency Hierarchies ... 25

3.1.6 Lightweight Components .. 28

3.1.6.1 Overview .. 28

3.1.6.2 Benefits .. 29

3.1.6.3 SCA Solution ... 29

3.1.6.4 Implementation Considerations ... 29

3.1.7 Component Model .. 30

3.1.7.1 Overview .. 30

3.1.7.2 Interfaces and Components .. 31

3.1.7.3 Benefits and Implications .. 32

3.1.8 Units of Functionality and SCA Profiles .. 34

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

iv
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.8.1 Overview .. 34

3.1.8.2 SCA UOFs and Profiles ... 34

3.1.8.3 Use of UOFs and Profiles .. 35

3.1.9 Late Registration ... 36

3.1.9.1 Application Registration .. 37

3.1.9.2 PlatformComponent Registration .. 37

3.1.9.3 Late Registration .. 38

3.1.10 Enhanced Process Collocation Support .. 39

3.1.10.1 Background .. 39

3.1.10.2 Earlier SCA Capabilities .. 40

3.1.10.3 Enhanced SCA Capabilities ... 40

3.1.11 Self-Launching Components .. 40

3.2 Design Guidance ... 41

3.2.1 CORBA profiles ... 41

3.2.1.1 Guidance on the use of Any ... 41

3.2.1.2 Guidance on the availability of commercial ORBs implementing these profiles 41

3.2.1.3 Use Case for the Lightweight profile ... 41

3.2.1.4 Guidance on restriction interface data types .. 43

3.2.1.5 Rationale for CORBA feature inclusion in the profiles ... 43

3.2.2 SCA Waveform Construction ... 44

3.2.2.1 Overview .. 44

3.2.2.2 FM3TR waveform example ... 44

3.2.3 Static Deployment ... 46

3.2.3.1 Overview .. 46

3.2.3.2 Deployment Background ... 46

3.2.3.3 Connection Management ... 47

3.2.3.4 Example ... 48

3.2.4 Application PIM Profiles Conformance Benefits ... 48

3.2.4.1 Application Conformance .. 48

3.2.4.2 Engineering Tool Conformance ... 49

3.2.5 IDL PSM Constraints .. 49

3.2.6 Organization Specific SCA Tailoring ... 49

3.2.6.1 Organization Specific Interfaces .. 50

3.2.6.2 Organization Specific Components ... 51

3.2.6.3 Organization Specific Components - Alternatives .. 52

3.2.6.4 Summary .. 53

3.2.7 Sample Waveform Architecture and Considerations .. 54

3.3 SCA Modifications .. 58

3.3.1 Resource and Device Interface Refactoring ... 58

3.3.1.1 Overview .. 58

3.3.1.2 Resource Related Modifications .. 58

3.3.1.3 Device Related Modifications ... 60

3.3.1.4 Summary .. 63

3.3.2 Refactored CF Control and Registration Interfaces .. 63

3.3.2.1 Overview .. 63

3.3.2.2 DeviceManager Interface Changes .. 63

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

v
Distribution Statement on the Cover Page applies to all pages of this document.

3.3.2.3 DomainManager interface changes ... 66

3.3.2.4 Application Interface Changes ... 67

3.3.2.5 ApplicationFactory Interface Changes .. 68

3.3.2.6 Summary .. 68

3.4 Working in an SCA Environment ... 69

3.4.1 SCA 4.1 Development Responsibilities .. 69

3.4.1.1 Overview .. 69

3.4.1.2 Component Development Alignment .. 69

3.4.1.3 Component Products .. 70

3.4.2 SCA Maintanence Process – How To Develop a New PSM? .. 71

3.4.2.1 Overview .. 71

3.4.2.2 SCA Change Proposal Process – Submitter Roles and Responsibilities 72

3.4.3 SCA Naming Conventions .. 72

3.4.3.1 Component Naming Conventions .. 73

3.4.3.2 Interface Naming Conventions .. 73

3.5 SCA Q&A .. 75

3.5.1 What elements of OMG IDL are allowed in the PIM? ... 75

3.5.1.1 Overview .. 75

3.5.1.2 PIM Background .. 75

3.5.1.3 PIM usage for SCA developers ... 75

3.5.1.4 Future PIM evolution ... 75

3.5.2 What is the Impact of the SCA Port changes? .. 76

3.5.2.1 Overview .. 76

3.5.2.2 Port Revisions .. 76

3.5.2.3 Interface and Implementation Differences .. 77

3.5.2.4 Implementation Implications ... 77

3.5.3 Rationale for DeviceManagerComponent Registration .. 78

3.5.4 Rationale for Removal of Application Release Requirement ... 78

3.5.5 Removal of the UML to Language Mappings .. 79

3.6 Future Enhancements ... 80

3.6.1 Component Life Cycle .. 80

3.6.1.1 Overview .. 80

3.6.1.2 BaseComponent State Model <Requesting Additional Input> 80

4 ACRONYMS .. 81

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

6
Distribution Statement on the Cover Page applies to all pages of this document.

TABLE OF FIGURES

Figure 1 Example SCA Powered Radio ... 9

Figure 2 JTR Set and Waveform Interfaces .. 11

Figure 3 Pull model registration ... 12

Figure 4 Push model registration .. 13

Figure 5 External framework management .. 14

Figure 6 Registered port management .. 15

Figure 7 Obtainable port management .. 15

Figure 8 Port lifecycles ... 16

Figure 9 Simple nested application ... 17

Figure 10 Security domain divided application .. 18

Figure 11 Inter-application connections ... 21

Figure 12 Connectivity specific example ... 22

Figure 13 Inter-application connections with external ports .. 23

Figure 14 Dependency Hierarchy ... 26

Figure 15 Dependency Hierarchy and Sub-Applications ... 27

Figure 16 Allocation property examples .. 27

Figure 17 Component Optional Composition ... 28

Figure 18 Component Optional Composition ... 29

Figure 19 Optional Composition Design Approaches .. 30

Figure 20 SCA Component Relationships .. 31

Figure 21 SCA Profiles with OE Units of Functionality .. 36

Figure 22 Application Component Registration ... 37

Figure 23 Platform Component Registration .. 38

Figure 24 Lightweight Component in Lightweight profile .. 42

Figure 25 Component distributed across multiple processing elements ... 42

Figure 26 Distributed component with FPGA portion ... 43

Figure 27 Example FM3TR SCA Waveform Design ... 45

Figure 28 Example Deployment of FM3TR ... 46

Figure 29 ApplicationFactory Role in Component Deployment .. 47

Figure 30 Device Component Definition .. 50

Figure 31 Definition of an Organization Specific Interface ... 51

Figure 32 Use of an Organization Specific Interface ... 51

Figure 33 Base Component Definition ... 52

Figure 34 Model of an Organization Specific Component ... 53

Figure 35 High Level APCO-25 Architecture .. 54

Figure 36 APCO-25 Platform Components .. 55

Figure 37 Resource Interface Refactoring .. 58

Figure 38 Application Component Optional Interfaces .. 59

Figure 39 ResourceFactory Interface Refactoring ... 60

Figure 40 Device Interface Inheritance Refactoring ... 61

Figure 41 Device Interface Refactoring .. 61

Figure 42 LoadableDevice Interface Refactoring ... 62

Figure 43 ExecutableDevice Interface Refactoring .. 62

Figure 44 DeviceManager Interface Refactoring – registration operations 64

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

7
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 45 DeviceManager Interface Refactoring – attributes .. 65

Figure 46 DeviceManager Interface Refactoring – miscellaneous operations 65

Figure 47 DomainManager Interface Refactoring – registration operations 66

Figure 48 DomainManager Interface Refactoring – manager registration operations 67

Figure 49 DomainManager Interface Refactoring – installation operations 67

Figure 50 ApplicationManager Interface Refactoring .. 68

Figure 51 ApplicationFactory Interface Refactoring .. 68

Figure 52 General Allocation of Components to Radio Developers .. 69

Figure 53 SCA Change Proposal Process ... 71

Figure 54 SCA Components ... 73

Figure 55 SCA Interfaces ... 74

Figure 56 Port Interface Refactoring .. 76

Figure 57 Port Implementation Differences ... 77

Figure 58 Sequence Diagram depicting application release behavior .. 79

Figure 59 Component Life Cycle ... 81

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

8
Distribution Statement on the Cover Page applies to all pages of this document.

1 SCOPE

This User’s Guide is intended to provide practical guidance and suggestions for developing

Software Communications Architecture (SCA) compliant products. It is not a substitute for the

SCA specification, but a companion document to provide implementation guidance and design

rationale which complement the formal specification. This document will expand in content and

detail as SCA user experiences accumulate.

1.1 INFORMATIVE REFERENCES

The following documents are referenced within this specification or used as reference or guidance

material in its development.

[1] Software Communications Architecture Specification Appendix B: SCA Application

Environment Profiles, Version 4.1, 20 August 2015.

[2] OMG Document formal/2012-11-12, Common Object Request Broker Architecture

(CORBA) Specification, Version 3.3 Part 1: CORBA Interfaces, Version 3.3, November

2012.

[3] OMG Document formal/2008-11-06, Common Object Request Broker Architecture

(CORBA) for embedded Specification, Version 1.0, November 2008.

[4] Software Communications Architecture Specification Appendix E-2 - Attachment 1: SCA

CORBA Profiles (from CORBA/e), Version 4.1, 20 August 2015.

[5] Software Communications Architecture Specification Appendix D - Platform Specific

Model (PSM) - Domain Profile Descriptor Files, Version 4.1, 20 August 2015.

[6] Software Communications Architecture Specification Appendix F - Units of Functionality

and Profiles, Version 4.1, 20 August 2015.

[7] OMG Document formal/2002-04-01, UMLTM Profile for CORBATM Specification,

Version 1.0, April 2002.

[8] Software Communications Architecture Specification Appendix E: Model Driven Support

Technologies, Version 4.1, 20 August 2015.

[9] Donald R. Stephens, Cinly Magsombol, Chalena Jimenez, "Design patterns of the JTRS

infrastructure", MILCOM 2007 - IEEE Military Communications Conference, no. 1,

October 2007, pp. 835-839.

[10] Cinly Magsombol, Chalena Jimenez, Donald R. Stephens, "Joint tactical radio system—

Application programming interfaces", MILCOM 2007 - IEEE Military Communications

Conference, no. 1, October 2007, pp. 855-861.

[11] Donald R. Stephens, Rich Anderson, Chalena Jimenez, Lane Anderson, "Joint tactical radio

system—Waveform porting", MILCOM 2008 - IEEE Military Communications

Conference, vol. 27, no. 1, November 2008, pp. 2629-2635.

[12] JTRS Waveform Portability Guidelines,

http://www.public.navy.mil/jtnc/sca/Pages/portabilityguidelines1.aspx.

[13] JTRS Open Source Information Repository, http://gforge.calit2.net/gf/project/jtrs_open_ir/.

[14] Anthony Nwokafor, “Design and implementation of an encryption framework for APCO

P25 using an open source SDR platform in an OSSIE environment”, Master’s Thesis,

University of California San Diego, 2012.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

9
Distribution Statement on the Cover Page applies to all pages of this document.

2 SCA INTRODUCTION

2.1 SEPARATION OF WAVEFORM AND OPERATING ENVIRONMENT

A fundamental feature of the SCA is the separation of waveforms from the radio’s operating

environment. Waveform portability is enhanced by establishing a standardized host environment

for waveforms, regardless of other radio characteristics. An example diagram of an SCA-based

radio is illustrated within Figure 1. The waveform software is isolated from specific radio

hardware or implementations by standardized APIs.

Figure 1 Example SCA Powered Radio

2.2 OPERATING ENVIRONMENT

2.2.1 Application Environment Profiles

To promote waveform portability among the many different choices of operating systems, the SCA

specifies the operating system (OS) functionality relative to IEEE POSIX options and units of

functionality. The Application Environment Profiles (AEP) specification [1] identifies specific

operations such as pthread_create(), open(), etc., that are available for use by

ManageableApplicationComponents and must be provided by the radio platform. A platform may

implement or provide additional OS functions, but waveform access to those functions is

constrained to those defined in the AEP profiles. This prohibition ensures that any SCA compliant

radio can support the waveform’s OS calls.

The SCA AEP defines three profiles, the AEP, Lightweight (LwAEP) and Ultra-Lightweight

(ULwAEP) that may be used across a range of radio sets ranging from a small handheld to a

multichannel radio embedded within an aircraft. The LwAEP is a subset of the AEP and intended

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

10
Distribution Statement on the Cover Page applies to all pages of this document.

for constrained processors such as Digital Signal Processors (DSP)s that typically do not support

more capable real-time operating systems. The ULwAEP is a subset of the LwAEP and intended

for very constrained, microkernel based systems.

Some waveforms may require networking functions such as socket or bind. If a radio platform is

going to host waveforms that utilize those operations, it must support the Networking Functionality

AEP as an extension to the primary AEP profile. Reference [4] provides additional information

related to networking.

2.2.2 Middleware and Data Transfer

In Figure 1, the radio platform provides middleware and data/messaging transport in addition to the

real-time operating system. Middleware is a generalized service which facilitates messaging

between software components which may or may not be hosted on separate processors. SCA 2.2.2

and its predecessors mandated CORBA as the middleware layer and delegated the choice of a

specific transport protocol to the radio set developer. Common data transfer protocols are TCP-IP

and shared memory. The former can introduce substantial latency and may have unfairly tarnished

CORBA’s reputation within the radio community. Faster transports such as shared memory

generally yield latencies more acceptable to high-data rate waveforms.

SCA does not have a CORBA requirement and defines middleware independent APIs, although

they are still specified in interface definition language (IDL) [2]. Radio developers may continue

to use CORBA or select a different middleware such as the lightweight Remote Procedure Call

(RPC) used by the Android platform. If an alternate middleware is selected, then products that

were dependent on the prior mechanism would require recompilation, but the APIs should remain

the same for the most part, thus maximizing waveform portability.

2.3 JTNC APPLICATION PROGRAM INTERFACES

Figure 1 contains several independent APIs which separate the waveform from the radio set. The

primary emphasis of the JTNC API standardization efforts has been upon interfaces between the

waveform and radio set such as those illustrated in Figure 2. The internal interfaces and transport

mechanisms of the radio are defined as necessary by the radio provider. The underlying intent is to

provide portability or reuse of the waveform between radio platforms and not necessarily

portability of the radio operating environment software. For additional discussion on waveform

portability, see [11] and [12].

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

11
Distribution Statement on the Cover Page applies to all pages of this document.

W
a

v
e

fo
rm

 A
p

p
lic

a
ti
o

nHMI

Service

System

Control

Modem

Device

Audio

Device

Modem

Hardware

Audio

Hardware

Standardized

JTNC APIs

Operator

Control

Set-Specific

Interfaces

Figure 2 JTR Set and Waveform Interfaces

There has been a conscious effort to maintain a clear separation between the SCA and the JTNC

APIs which define services provided by the radio set to the waveform such as GPS, time, etc. The

distinction not only maintains the integrity of SCA framework and preserves its applicability across

a wide range of domains, but also allows the content of each family of specifications to evolve

according to its own timetable. A partial list of the JTNC APIs is provided in Table 1. The APIs

have been developed with software design patterns that encourage a scalable and extensible

infrastructure. See [9] and [10] for an introduction to the aggregation, least privilege, extension,

explicit enumeration, and deprecation design patterns used by the JTNC APIs.

Table 1 Partial List of JTNC APIs

Audio Port Device API Ethernet Device API

Frequency Reference Device API GPS Device API

Modem Hardware Abstraction Layer (MHAL) API Serial Port Device API

Timing Service API Vocoder Service API

MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

The JTRS Platform Adapter (JPA) is both an API and a design pattern for controlling the waveform

by the radio set (it is a particularly vexing problem, to define a portable command/control interface

for waveforms across multiple radio sets). This API uses the SCA PropertySet interface as a

container for waveform parameters controlled and manipulated by the radio set. It also supports

bidirectional communication, permitting the waveform to provide status to the radio set.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

12
Distribution Statement on the Cover Page applies to all pages of this document.

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY
INFORMATION

3.1 SCA FEATURES

3.1.1 Push model

3.1.1.1 Overview

Earlier SCA versions were pull model oriented as shown in Figure 3. References are exchanged

between providers and consumers, but callbacks are required to retrieve information from the

provider component.

For example:

• getPort for pulling uses and provides ports

• Pulling attributes (e.g. deviceID, registeredDevices)

• Pulling Application Components from a Naming Service

Figure 3 Pull model registration

SCA now utilizes a push model, Figure 4, architectural approach that allows for a direct exchange

of information without callbacks. The primary benefits of this model are better information

assurance and performance. Better information assurance is achieved by limiting component to

manager access to pushes only and eliminating the need for a Naming Service. Performance is

enhanced as the total number of calls involved in the registration process is reduced. This can

decrease component startup and instantiation time. Push model registration also allows the call

back attributes and operations to become optional and when they are not used the amount of

required implementation can be reduced.

For example:

• Device ID and Provides Ports can be pushed with the data provided at component

registration time and don’t need to pulled later

• Registered components (complete with IDs and Provides Ports) can be pushed with

DeviceManagerComponent registration

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

13
Distribution Statement on the Cover Page applies to all pages of this document.

o The DCD information can also be pushed instead of pulled by accessing a

DeviceManagerComponent attribute

• Direct registration of application components removes the need for a Naming Service

Figure 4 Push model registration

3.1.1.2 External framework management

External Framework Management was expanded slightly to accommodate a push model.

For example

• The installApplication return now provides a ComponentType data structure that contains

data elements which previously required separate pull calls.

However, external framework management predominately maintains the pull model support of

previous SCA versions.

The rationale for this approach is that it provides a good balance of performance, capability and

compatibility. It affords greater performance when utilizing the push model extension for external

management, but continues to support the existing use cases where pulls may still be needed. It

also allows for backward compatibility without violating the least privilege principle.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

14
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 5 External framework management

3.1.1.3 Registered and obtainable provides ports

In order to implement a push model and allow continued support of prior use cases, the provides

port semantics had to be enriched. SCA currently provides two types of provides ports,

“Registered” and “Obtainable”. Sometime these are referred to using the terms “Static” and

“Dynamic” which are found in earlier SCA versions. To avoid confusion, Registered Provides

ports = Static Provides Ports. Obtainable Provides Ports = Dynamic Provides Ports.

3.1.1.3.1 Registered provides ports

Registered provides ports are provides ports which have a lifecycle tied to the lifecycle of the

component. Registered ports are registered with the framework during component registration and

the framework will not attempt to retrieve them when making connections. Registered ports are

not explicitly released by the framework except through the component’s releaseObject operation.

Thus, the getProvidesPorts and disconnectPorts operations typically are not called for registered

provides ports. For assurance reasons, there may be cases when a component may want to reject

calls for these ports explicitly (e.g. raise an UnknownPort or InvalidPort exception). There may

also be instances when a component may want to allow ports that are “registered” to still also be

“obtainable”. Meaning the ports can be retrieved from getProvidesPorts and then connections to

the ports can be disconnected through disconnectPorts. The exact details surrounding the

semantics of port connectivity are left unspecified to allow component developers to customize this

behavior to match the needs of the target platform.

However a framework that is built in accordance with the specified SCA requirements will not

retrieve registered provides ports through getProvidesPorts and will not disconnect them through

disconnectPorts.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

15
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 6 Registered port management

3.1.1.3.2 Obtainable provides ports

Registered provides ports are provides ports which are meant to have a lifecycle tied to the

lifecycle of a given connection. Obtainable provides ports are not registered with the component

and instead the framework will attempt to retrieve the ports through the getProvidesPorts operation

when they are needed to complete connections. Obtainable provides ports are explicitly released

by the Framework via the disconnectPorts operation when the connections to them are torn down.

With obtainable provides ports, by specifying connectionIDs on getProvidesPorts and calling

disconnectPorts, additional use cases and added functionality are supported that is not available

within prior SCA versions.

Figure 7 Obtainable port management

Whether or not obtainable provides ports have to be tied to the lifecycle of a given connection is

not specified. Several use cases exist where they may have a longer lifecycle:

• A “backward compatibility” use case where a provides port is created and released with the

component, but not registered, mimicking the prior SCA pull-model behavior

• A “fan in” use case where the same provides port instance services multiple connections,

with reference counting used to dictate when it is released.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

16
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 8 Port lifecycles

3.1.2 Enhanced Application Connectivity

3.1.2.1 Background

Prior SCA releases only supported the ability to deploy individual, standalone applications. While

multiple applications could be deployed on a platform, the SCA component framework did not

provide direct support to interconnect or logically nest those applications. As a result, the client

creating the applications was left to do this manually, using a combination of external ports and

either “hard coded” interconnection or automatic interconnection using information gleaned from

the application XML.

However, this approach was very limited and required much of the client. Since endpoint

interconnection was not automatically controlled by the SCA a number of challenges existed, such

as the following:

• Added complexity to client code – the client code needs to understand how to retrieve and

establish port connections, and for some implementations utilize XML to introspect the

application information.

• Reduced security – in some systems, the ability to make CORBA port connections is

intentionally restricted to preserve application integrity, and for similar reasons, the ability

to obtain the necessary CORBA object references is restricted.

• Abstraction / Information hiding – in some cases, you may want an application to behave

like a single component, and include such a sub-application within an outer component.

Pre-SCA 4 frameworks did not support this manner of abstraction

• Distribution of applications – in some systems (typically those with an application

partitioned across two or more security domains) it is desirable to decompose an application

into sub-applications; with component instantiation and interconnection occurring locally

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

17
Distribution Statement on the Cover Page applies to all pages of this document.

within the domain, thus minimizing “bypass” traffic crossing domains during creation. In

prior versions of the SCA this was not supported, leading to non-optimal workarounds.

In the current SCA, a set of capabilities has been added to support the above needs. The two

capabilities, “Nested application support” and “Application interconnection” are addressed in the

following sections. Nested applications may also benefit from the use of the Enhanced allocation

property support, which is described in section 3.1.5.

3.1.3 Nested applications

3.1.3.1 Use cases for nested applications

A simple, monolithic application is still the best solution for many platforms, however several

common situations exist where a hierarchical, nested application presents a better solution.

The first scenario arises from the simple desire to better manage application instantiation and

encapsulate complex application structure into a hierarchical organization. In SCA 2.2.2 and

earlier versions the application structure was “flat”, simply consisting of “leaf” components. This

limitation no longer exists because complex subassemblies now can be formed and abstracted into

sub-applications, which may in turn be combined to form a single application. This architectural

technique can enable a subassembly to be used in different contexts, promoting reuse in common

asset libraries such as those employed in software product lines.

ApplicationManagerComponent

<<ManageableApplicationComponent>>
AppComponent B

<<ApplicationControllerComponent>>
SubAssembly C1

<<ManageableApplicationComponent>>
AppComponent D

<<ManageableApplicationComponent>>
Component C4

<<ManageableApplicationComponent>>
Component C3

<<ManageableApplicationComponent>>
Component C2

<<ApplicationControllerComponent>>
AppComponent A

Figure 9 Simple nested application

An example of this composition is shown in Figure 9. In this example, an overall application is

made up of four top-level components, with one of the components (AppComponent A)

functioning as the application’s ApplicationControllerComponent. Component C1 however is not

a simple component created by the normal componentinstantiation element within the SAD1, but

rather a sub-application created through an assemblyinstantiation. To AppComponentA this nested

sub-application is abstracted as a single ManageableApplicationComponent, but from a creational

standpoint the “upper level” ApplicationFactoryComponent constructs a true sub-application per a

cited SAD. As is discussed later, in this example there is no separate

1 Componentplacements are located inside either a componentplacement or hostcollocation element

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

18
Distribution Statement on the Cover Page applies to all pages of this document.

ApplicationManagerComponent produced to manage the sub-application, rather all management is

performed by the upper blue ApplicationManagerComponent. However, this approach is a core

framework implementation decision, and an equally valid approach would have the sub-application

managed by an intermediate ApplicationManagerComponent, through the narrowed interfaces

made available by the ManageableApplicationComponent.

A second use-case arises on platforms which provide encryption in such a way that two or more

security domains are established (e.g. plaintext and ciphertext domains). In some high assurance

environments, these domains are distinct and separated (usually by some sort of cryptographic

subsystem) such that control and configuration communication between the domains needs to be

minimized. In such a system, it could be beneficial to structure an application such that it

resembles two or more independent sub-applications, one in each security domain. A typical

representation of this situation is shown in Figure 10.

CT Sub-applicationPT Sub-application

ApplicationManagerComponent

<<ApplicationControlleComponentr>>
PtComponent 1

<<ManageableApplication
Component>>

PtComponent 2

<<ApplicationControllerComponent>>
CtComponent 1

<<ManageableApplication
Component>>

PtComponent 3

<<ManageableApplication
Component>>

CtComponent 4

<<ManageableApplication
Component>>

CtComponent 3

<<ManageableApplication
Component>>

CtComponent 2

Figure 10 Security domain divided application

In this example, we see a top-level application wholly consisting of two sub-applications, each

deployed in a different security domain2. The example also has the

ApplicationManagerComponent3 distributing properties and controlling two distinct

ApplicationControllerComponents. Be aware that the SCA does not specify how this application is

physically constructed – a clever implementation could distribute the required

CF::ApplicationFactory behavior across the security domains (while still controlling this through a

common CF::ApplicationFactory interface) thus minimizing cross-domain communications.

3.1.3.2 How nested applications work in SCA

While a significant enhancement, SCA support of nested applications is not immediately obvious,

or described in a dedicated section. Support is enabled through a number of small changes

scattered throughout the document. The major modifications required to support this feature exist

in Section 3.1.3.3.1.1 (ApplicationManager), 3.1.3.3.1.3 (ApplicationFactory), and throughout

Appendix D.

2 Not to be confused with an SCA domain – in this system, there is still only one domain manager.
3 Application ManagerComponents implement the CF::ApplicationManager interface and

responsibilities, and are created / supplied by the core framework.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

19
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.3.2.1 ApplicationFactoryComponent support for nested applications

The ApplicationFactoryComponent, via the ApplicationFactory interface, provides the means to

create a single, top-level application. The application is created according to the specifications

provided in a set of XML files, encapsulated by a Software Assembly Descriptor (SAD), which

define how an application will be created. The instructions include which elements are used, and

how they are deployed, configured, and connected.

Earlier SCA versions referred to elements as individual components, which were defined by

Software Package Descriptors (SPD) and so on. The current SCA adds support for nested

applications by allowing not only the creation of components (which could be both “leaf”

components and BaseFactoryComponents) but also the creation of assemblies. These assemblies,

which function as sub-applications, are represented in the outer SAD by an assemblyinstantion

element, itself contained within an assemblyplacement element. While the method and order of

events is left largely to the implementation, the post-condition is clear – after an application is

constructed, all components represented by the outer SAD and those of any child SAD files cited in

assemblyplacements will have been instantiated, interconnected, and a ComponentType (i.e.

ApplicationManagerComponent) returned to the client. Furthermore, only top-level instantiated

applications will be listed in the DomainManagerComponent’s applications attribute; the presence

of any subassemblies is unlisted.

Just as important is what is not specified in SCA. Though not an inclusive list, the following

implementation alternatives were intentionally preserved:

• SCA does not specify the order in which components and subassemblies should be

constructed or initialized.

• SCA neither requires nor prohibits usage of intermediate ApplicationManagerComponents

to manage any sub-assemblies. Put another way, in some core frameworks, an implementer

could choose to have the top level ApplicationManagerComponent only manage the top

level leaf components and delegate any direct subassembly management to a “sub”

ApplicationManagerComponent, while in others, a single ApplicationManagerComponent

could be responsible for all components.

• SCA does not specify details regarding how nested applications are installed in a system.

The DomainManagerComponent’s installApplication() operation only lists a top level SAD

– the deployment of any other necessary files is assumed to have been previously

accomplished, and no assumptions are made regarding absolute or relative directory

placement.

• The nested SAD is no different from an outer SAD. In this way, an implementation could

allow separate installation of the SAD for standalone (“top level”) instantiation, while still

allowing the application to be used as a sub-application by citing it from another SAD.

• SCA, while requiring a single client interface (CF::ApplicationFactory) and compliance to

the requirements of an ApplicationFactoryComponent, does not dictate how the

functionality of this component is distributed across the system. In many systems an

ApplicationFactoryComponent will map to a single component which singlehandedly

guides the deployment. However, other compliant implementations are possible, especially

when an application is deployed across processors or security domains. One such example

would be a central coordinator which implements the CF::ApplicationFactory interface, but

delegates some of its component creation behavior to subcomponents (which need not

implement any specific interface). This federated deployment could minimize cross

processor or cross domain communications in some cases, speeding up deployment, etc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

20
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.3.2.2 ApplicationManagerComponent support for nested applications

The ApplicationManagerComponent4 has two broad responsibilities, which were expanded with

the introduction of nested applications. The first responsibility is to tear down the application

instance created by the corresponding ApplicationFactoryComponent. When nested applications

are supported in SCA, the allocation of the teardown responsibilities is unspecified. One

implementation approach would be for the top level ApplicationManagerComponent to manage top

level components exclusively, with one of them being an ApplicationManagerComponent which

manages its sub-application components. The advantage of this approach is one of symmetry (each

SAD creates an application and is managed by an ApplicationManagerComponent) and it is most

similar to prior SCA core framework implementations. However, other implementations are valid.

For example, SCA does not require ApplicationManagerComponents to manage the sub-

application components – instead a single, top-level ApplicationManagerComponent could be

responsible for tearing down all components (and port disconnection, etc.). This approach may be

more efficient in some cases or better centralize the domain data.

Secondly, ApplicationManagerComponents are responsible for distributing client calls made to the

Base Application interfaces, specialized by the CF::ApplicationManager interface, to the

application. In earlier SCA versions distribution was straightforward, all calls were to be passed to

a single component which realized the CF::Resource interface (not an assembly) that was

designated as the assemblycontroller in the SAD. If the DMD accardinality attribute has a value of

“single”, only one designated assemblycontroller exists, and the ApplicationManagerComponent

responsibilities remain the same. However in implementations that implement the

NestedDeployment UOF and have a DMD accardinality attribute with a value of “multiple”,

multiple assemblycontrollers are allowed and those assemblycontrollers are allowed to refer to an

assemblyinstantiation. When this is the case, the ApplicationManagerComponent is not able to

forward configure(), query() and runTest() as it did before. Instead, it must examine each

individual property and forward it to the appropriate assemblycontrollers based on the information

contained in its top level SAD and derived XML files (which in the nested case would include at

least one additional SAD). Additionally, as multiple properties can be listed in a configure or

query call, the ApplicationManagerComponent may also be required to break up those calls, or

potentially combine their results and exception behavior.

3.1.4 Application Interconnection

3.1.4.1 Overview

An alternative to having a single, monolithic application would be to have multiple independent

applications that collaborate with one another. The SCA application interconnection capability

provides a standardized approach for how to address the problem of establishing connections

between framework components modeled as applications. Prior to the introduction of this

capability multiple solutions were used to address this problem, complicating software reuse and

portability. Its introduction should alleviate those problems and ensure that a uniform realization of

this approach is available across platforms.

4 Prior to the introduction of the SCA Component Model, there was no formal

ApplicationManagerComponent, instead all requirements were allocated to an unnamed CF

component which implemented in the CF::ApplicationManager interface.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

21
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.4.2 Use case for interconnecting applications

A scenario which highlights the need for multiple independent applications would be one that

requires a system with a clear separation of concerns and loose coupling of components. For

example, a radio platform that contains an Android presentation layer which provides a general

purpose user interface that manages and monitors the system. This system could have been

designed in accordance with the Model, View, Presenter pattern where the applications to be

connected would be the waveform (Model) and UI intermediary (Presenter).

Earlier SCA versions did not have a means for the framework to form these connections. The SAD

contained the externalports element, which by definition provided a means for an application to be

connected with components (application or otherwise) external to a waveform, but no

corresponding framework guidance or requirements to establish those connections. Typically, the

gap was filled by introducing an additional component within the system to perform that

functionality.

3.1.4.3 Application interconnection design

The current SCA defines a formal mechanism that utilizes the externalports element as the conduit

to manage the formation and destruction of those inter-application connections. The external port

connection construct provides a good solution because it aligns with the nature of the problem –

two applications that need to be connected with one another but they are created independently and

there are no guarantees that they will be created. Consequently, the connection mechanism must

accommodate instances when one side of the connection does not exist.

Figure 11 Inter-application connections

3.1.4.4 Application interconnection implementation

Building upon the earlier scenario, both the waveform and the presentation layer will have their

connections described in their respective SAD files. The Android presentation layer, application A,

contains a provides port that can be accessed and used by other applications, so it will identify that

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

22
Distribution Statement on the Cover Page applies to all pages of this document.

port within its externalports element as a providesidentifier. The waveform, application B, wishes

to be connected to the presentation layer’s external port, so in one of its SAD connections it

specifies a connection between its local uses port and the externally provided provides port from A.

The example illustrates that only one application needs to define the connection for it to be

processed by the framework.

Figure 12 Connectivity specific example

3.1.4.5 ApplicationFactoryComponent support for interconnected applications

SCA now includes an additional type, application, within the domainfinder element. The semantics

associated with this type provide the framework with information describing the elements that will

be included within connections and how those connections should be formed. The

ApplicationFactoryComponent retrieves the connection endpoint via the domain’s domainfinder

element. When the application type is used, no implicit creation behavior is intended, so the

framework is not expected to instantiate an application if it does not exist. If neither endpoint exists

or can be resolved, then the specification permits implementation specific behavior. However, the

desired approach in the aforementioned scenario would be for the connection to be held in a

pending state until it can be established (note that in this approach either the waveform or the

framework will need to have sufficient safeguards to ensure that a call to this connection prior to its

formation does not result in an unexpected or uncontrolled termination). An alternative course of

action would be to prevent the application from being instantiated, although this seems excessive as

a well-designed waveform should not have critical dependencies that exist across application

boundaries.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

23
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 13 Inter-application connections with external ports

The ApplicationFactoryComponent must be able to accommodate multiple connection strategies

depending on the information provided in the domain profile. When only the application name is

specified, any ApplicationManagerComponent in the domain with that name can be used. When

both the application factory and application names are specified, only the named

ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be

used. When only the application factory name is specified then any

ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be

used.

3.1.5 Enhanced allocation property support

3.1.5.1 Overview

Several use cases exist that require the framework to have the ability to constrain the deployment of

application or nested application components. SCA 2.2.2 provided this capability with the channel

deployment functionality contained within the Software Communications Architecture Extensions

specification. Those capabilities were included within this SCA revision, and an alternative

approach was provided with the introduction of nested applications. Nested applications extend

SCA 2.2.2 allocation properties by making them more dynamic and accessible to nested

applications. The new constructs provide users with the ability to deploy nested applications to

different domains.

3.1.5.2 Descriptor structure for nested applications

The SAD’s definition was modified in this SCA release to accommodate nested applications. An

SCA application consists of 0 or more components and 0 or more nested applications. The nested

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

24
Distribution Statement on the Cover Page applies to all pages of this document.

applications incorporate a new element, applicationinstantiation, which is similar to a

componentinstantiation, but has different sub-elements.

Nested applications are similar to a ManageableApplicationComponent in that they can receive

properties, deviceassignments and deploymentdependencies. However they differ from those

components in that they cannot be created by a BaseFactoryComponent. The information in the

applicationinstantiation element is intentionally similar to the ApplicationFactory::create() call.

This similarity permits an implementation to use the ApplicationFactory::create() operation to

create a nested application.

<!ATTLIST componentfile

 id ID #REQUIRED

 type CDATA #IMPLIED>

 <!ELEMENT partitioning

 (componentplacement | hostcollocation

 | assemblyplacement)

)+>

 <!ELEMENT assemblyplacement

 (componentfileref

 , assemblyinstantiation+

)>

<!ELEMENT assemblyinstantiation

 (componentproperties? ,

 , deviceassignments? ,

 , deploymentdependencies? ,

 , executionaffinityassignments?

) >

<!ATTLIST assemblyinstantiation

 id ID #REQUIRED>

3.1.5.3 SCA Enhanced Allocation Properties

SCA 2.2.2 allocation properties could only be assigned in .prf files, and not overridden. Similarly,

dependencies were specified in .spd files, and could not be overridden. This severely limited the

manner in which they could be used.

The SCA deploys components by evaluating dependency requirements against existing component

allocation property definition. As an example a DeviceComponent (or other component) defines an

allocation property in a .prf file as follows:
<simple id="RadioChannel" type="short" name="RadioChannel">

 <value>0</value>

 <kind kindtype="allocation"/>

 <action type=“eq"/>

</simple>

Then a component to be deployed establishes a dependency against the allocation property by

stating the type of device it requires:
<dependency type="RadioChannelDependency">

 <propertyref refid= "RadioChannel" value="5"/>

</dependency>

Type can be “software package

descriptor” or “software assembly

descriptor”

Assemblies may consist of both

components and assemblies (e.g.

SAD). However, assemblies

cannot be inside hostcollocaton

sections and cannot be created

by component factories.
New element, modeled after

componentinstantiation.

Componentproperties (configureproperty type

only), override nested SAD similar to that in

create call and deviceassignements and

deploymentdependencies act in the same way

as if passed into ApplicationFactory::create().

Nested assemblies can also serve as

application controllers

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

25
Distribution Statement on the Cover Page applies to all pages of this document.

If the dependency can be satisfied by one of the component allocation property definitions within

the domain, then that DeviceComponent becomes a usage or deployment candidate.

SCA now provides the ability to override component allocation properties in the

componentinstantiation section. This allows a system designer to assign different values to

allocation properties on a per-instance basis, e.g. “the channel 4 instance of the GppDevice gets the

deployedChannel allocation property overridden to 4”. In prior SCA versions, a system designer

would have had to edit the component’s .prf file or use the SCA extension .pdd file to accomplish

this. SCA also introduced a capability to specify SAD and create() based deploymentdependencies.

The deploymentdependencies element specifies a list of dependencies which can override SPD

defined dependencies (either within deployment or as part of a uses device connection). The

dependency relationship is overridden, not the allocation property, which differs from other

“property overrides”. Lastly, a list of deploymentdependencies can be passed into the

ApplicationFactory::create() operation to allow client-controlled dependencies (e.g. radio channel)

to be specified.

3.1.5.4 SCA Dependency Hierarchies

SPDs define the dependencies for a particular component type. Unless overridden, these definitions

apply to all instances of the component.

As shown in Figure 14, SAD componentinstantiations can optionally override a dependency for a

given instance – if the SPD uses the dependency for deployment or a usesdevice relationship. This

would, for example, allow an application to place two instances of the same component in different

domains.

An optional top-level SAD deploymentdependencies element allows for global dependency

overriding across all applicable application components (see Figure 14). Using this approach does

not impose the dependency on a component, but overrides it as if a like-named dependency existed

within the component’s SPD. This approach is likely more applicable within an assembly that uses

nested applications.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

26
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 14 Dependency Hierarchy

At the highest level of the dependency hierarchy, a client could supply deploymentdependencies

which could be applied to the entire application. A common usage scenario would be to specify a

radio channel placement dependency. As Figure 15 depicts, when application nesting is used, the

rules stay the same but overriding occurs from the outermost SAD (highest precedence) to the

innermost SAD. An additional deploymentdependency is added to the assemblyinstantiation

element. This allows dependencies to be supplied that would apply to the nested application (and

any of its children). A common usage scenario for this capability would be to place distinct sub-

applications in different domains.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

27
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 15 Dependency Hierarchy and Sub-Applications

The following table provides an example of a class of allocation properties and how they might be

used within a system:

Figure 16 Allocation property examples

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

28
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.6 Lightweight Components

3.1.6.1 Overview

Lightweight Components and Units of Functionality (UOF) are the mechanisms which can be used

to better align SCA based products with mission requirements. Lightweight Components provide a

flexible architectural approach that accommodates various platforms requirements (mobile versus

static, single channel versus multiple channels, single waveform versus multiple waveforms, small

form factor, etc.).

Users commented that the SCA 2.2.2 interface associations led to a one-size-fits-all implementation

which resulted in components being larger than necessary. For example, an SCA 2.2.2 resource

component includes testable objects, properties, etc. However, if a component doesn’t need a self-

test capability or properties, the specification still required its developer to implement that

functionality. The developer could circumvent the problem by removing the inherited interface

manually, which could lead to compliance issues, or providing a stubbed implementation that

would be compliant but introduce dead code and increase product size.

The current SCA utilizes an optional composition pattern to address this problem. An example of

how this feature is included within an SCA component is illustrated in Figure 17. The SCA

convention is to label each optional composition association with its designated Unit of

Functionality.

Figure 17 Component Optional Composition

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

29
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.6.2 Benefits

Each optional composition flag shown in the Unified Modeling Language (UML) is associated

with a UOF in Appendix F [6]. Having the ability to eliminate unnecessary interfaces allows

components to be smaller and more focused than components realized in accordance with earlier

SCA versions. Having fewer interfaces to realize reduces a component’s footprint size; one should

remember that there are size implications associated with stubbed implementations. The savings

realized from a single component might be minimal, but the amount can add up when extended

across all of the components that comprise a radio set. Omitting rather than stubbing unneeded

operations can also improve a system’s assurance profile because it eliminates a potential

vulnerability of having an additional system operation, in this case one that might be given less

scrutiny because it was not intended to be used. Lastly, omitting the extraneous interfaces can

reduce development time across the entire software development life cycle. Making a decision to

not implement an interface early in the development cycle reduces a cascade of requirements that

span the entirety of the development process. When the decision is made to implement an interface,

even a dummy implementation, it incurs additional costs such as requirements analysis, design

decisions, development time, software integration and testing and compliance testing. The total

effort saved as a result of not performing those activities can result in a significant time savings that

will grow linearly as additional components are incorporated within the system.

3.1.6.3 SCA Solution

During the design process two approaches were considered as routes to get to the endpoint of

lightweight components. The selected approach, illustrated in Figure 18, can be thought of as

optional composition. In optional composition, a component would only realize the interfaces

“<interface>” that it needs. In the example, the My WF Component realization would have the

option of providing an implementation for either the PropertySet and/or the Lifecycle interfaces.

Figure 18 Component Optional Composition

3.1.6.4 Implementation Considerations

The optional composition approach comes with implications on the framework implementation

which are associated with the two scenarios represented in Figure 19. In the example on the left,

the framework needs to account for My WF Component having a relationship with either or both

interfaces. In the other scenario a component implementation defines an implementation specific

interface to act as an intermediary that combines the required interfaces into a single reference. In

this case the framework cannot make any implementation decisions that preclude a developer from

utilizing that type of design. Both of these are viable alternatives, and existing Core Framework

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

30
Distribution Statement on the Cover Page applies to all pages of this document.

implementations may need to incorporate additional “is_a” calls within a CORBA PSM, to

determine whether or not a component realizes a particular interface.

Figure 19 Optional Composition Design Approaches

Additionally, the ApplicationManagerComponent does not use any of the lightweight

configurations. This constraint is included to preserve backwards compatibility with earlier

implementations.

An important point to keep in consideration is that Lightweight Components are an optional

capability. If a developer chooses not to leverage the optional composition capability then they are

able to develop compliant applications that are very similar to those produced in accordance with

SCA 2.2.2. Some developers may determine that the enhancements provided by Lightweight

Components do not exceed the cost benefit threshold associated with the change. However

Lightweight Components provides SCA users with a common pattern and approach to optimize

components for those that would benefit from the capability.

3.1.7 Component Model

3.1.7.1 Overview

The SCA component model provides a means to improve the clarity and consistency of the

specification. Earlier SCA versions contained numerous references to “components”, but did not

define the term and used it very inconsistently throughout the document. Consequently, a large

burden was placed on the reader to determine which elements described the attributes of runtime

system elements. The presence of the component model also provides a foundation for the use of

software modeling and Model Driven Development techniques within the development of SCA

compliant products. Figure 20 illustrates some of the SCA components.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

31
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 20 SCA Component Relationships

3.1.7.2 Interfaces and Components

SCA 2.2.2 was expressed in terms of interfaces, or more specifically CORBA interfaces.

Accompanying each interface specification was information describing its associations, semantics

and requirements. This representation of information was often challenging for new readers of the

specification because it did not align with their expectations of what an interface should provide

and it did not support an easy decomposition of implementation responsibilities.

An interface is a shared boundary or connection between two entities. It specifies a well-defined,

and limited role which needs to be fulfilled. The role may either be functional (defined specific

behavior to be performed; “to do” or non-functional (identifies criteria used to judge the qualities

of operation: “to be”). Interfaces define “what” needs to be done, “why” something needs to be

done, but not “how” to do it. As such, most pure interfaces tend to be stateless.

Since a well-defined interface defines a limited role, and complex system elements generally need

to fulfill multiple roles, multiple, separate interfaces are often required to fully support the set of

functional and non-functional requirements. It is often the case that multiple interfaces need to

interact with one another and only certain sequences of those interactions will result in useful

functionality. Therefore it is often useful to package these interactions between multiple interfaces

into an integrated unit of defined behavior known as a component.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

32
Distribution Statement on the Cover Page applies to all pages of this document.

A Component is an autonomous unit within a system or subsystem. Components provide one or

more interfaces which users may access and encapsulate the internals of how they are provided

other than as accessed by their interfaces.

Components provide a modular, replaceable part of a system, which within its defined

environment:

• implement a self-contained lifecycle, which may include sequential interaction

requirements which exist between multiple provided interfaces

• present a complete and consistent view of its execution requirements (MIPS, memory, etc)

to its physical environment

• serve as a type definition, whose conformance is defined by its ‘provided’ and ‘required’

interfaces

• encompass static and dynamic semantics

Table 2 Characteristics of Component and Interfaces

Interface Characteristic Component Characteristic

Role -oriented � best suited as problem domain

/ analysis-level abstractions

Service -oriented � best suited as solution

domain / functional-level abstractions

Conceptual / Abstract / Unbounded

Responsibilities

Practical / Concrete / Constrained

Responsibilities

Have no implementation mechanisms Can – and often do – provide prototype or

default implementations

A necessary, though not sufficient, element of

Portability and Detailed Architecture / Design

Reuse

Properly-developed, Components improve

prospects of Portability and Detailed

Architecture / Design Reuse

Interfaces are generally SYNTAX without an

underlying SEMANTIC definition, and are

generally seen as STATELESS as a result

Components MUST HAVE well-defined

SEMANTIC baselines because they fulfill

multiple Roles within a Framework �

Components are MUCH-MORE than the sum of

the Interfaces which they implement

3.1.7.3 Benefits and Implications

The introduction of the component model provides a concrete bridge from interface to

implementation responsibilities and a well-defined path for integrating model based software

engineering techniques within the development process. Having these abilities will be even more

important as usage of SCA optional composition becomes more prevalent.

The textual and formatting changes associated with the incorporation of components within the

framework are visually intimidating because they introduce several new sections, new model

elements and relocate text. The division of responsibilities may at times look duplicative e.g. why

there is a need for a DomainManager interface and a DomainManagerComponent. However, as

you read the corresponding sections it will become apparent that in most cases the component

oriented sections include semantics and requirements associated with deployed or executing

systems or elements.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

33
Distribution Statement on the Cover Page applies to all pages of this document.

In terms of the SCA product implementation, the impact of the component model should be

negligible. The component model does not contain any constructs that map into IDL, therefore any

requirements that are implemented by a product developer must be done within the context of the

IDL generated from the interface definitions. In fact, the layout represents how most current SCA

developments already implement their software elements:

• The developer creates an implementation class that represents a component, e.g. a

ManageableApplicationComponent

• The implementation class has associations with other classes that correspond to

CF::LifeCycle, PortAccessor, PropertySet and other interfaces

• The implementation fulfills the roles, behaviors and interfaces prescribed by its

incorporated SCA elements

The component model is still a work in progress within the specification for a couple of reasons.

There were a number of modifications made to accommodate inclusion of the new concept and it is

fully expected that some elements that should have been moved were not. Secondly, at time of

publication, the group had not come to consensus on far reaching decisions such as whether or not

exception throwing should be described in an interface or component sections.

It is expected that these and other issues related to components will continue to evolve in future

revisions of the specification, however, consistent with the earlier discussions, these modifications

will improve the quality of the specifications and enhance its use within modeling environments

but they should have no impact on an SCA product implementation.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

34
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.8 Units of Functionality and SCA Profiles

3.1.8.1 Overview

Earlier SCA versions have subscribed to a “one size fits all” approach to implementation and

specification compliance. The documents described the SCA elements and associated a set of

requirements with each construct. When a developer chose to incorporate an instance of one of

those elements they were responsible for implementing all of the associated requirements or

seeking a waiver for any capabilities that were not provided.

The SCA Units of Functionality (UOF) and Profiles were developed to address the restrictions

imposed by the earlier specifications. The intent behind the UOFs was to introduce a set of flexible

constructs within the framework that allowed SCA to accommodate a wide variety of target

platform (e.g. resource constrained, fixed wing aircraft) and architecture (e.g. single versus multiple

channel) specific requirements gracefully which in turn support the development of more “mission-

focused” products.

The primary benefit associated with having UOFs is that they provide a standardized approach that

allows interfaces and requirements that are not appropriate for a product to be omitted from the

component specification. The elimination of these requirements has the following ancillary

benefits:

• Reduced footprint – being able to omit unnecessary interfaces reduces the size of the

deployed object. Even a stubbed interface realization requires a small amount of space and

these small savings can add up

• Increased assurance – reducing the size of the developed object increases the degree to

which the code can be assessed. The reduction in size minimizes the number of locations in

the product that could be exploited. Likewise, having dead or stubbed code introduces

additional locations where vulnerabilities might exist

• Reduced development time – having fewer requirements has a direct correlation with

smaller projects and shorter development cycles

• Enhanced product performance – reducing object size and removing unnecessary modules

improves the performance as there is less code to execute and fewer opportunities for

superfluous context switches

3.1.8.2 SCA UOFs and Profiles

SCA UOFs were intended to be understood in a manner similar to their POSIX namesakes: a Unit

of Functionality is a subset of the larger specification that can be supported in isolation, without a

system having to support the whole specification. The initial design philosophy behind UOFs was

that they should be restricted to optional SCA features. However, this was relaxed as the

specification matured so there are some UOFs that are associated with mandatory capabilities. Part

of the rationale behind the expansion was to identify and highlight tightly coupled requirements,

the other was to accommodate discussions regarding whether or not some of those capabilities

might become optional in the future. Even with the expansion not all SCA requirements are

associated with a UOF.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

35
Distribution Statement on the Cover Page applies to all pages of this document.

The Profiles comprise a set of UOFs, the collection of which is intended to be aligned with

common, real world platform configurations. SCA Profiles are only applicable to OEs because it

was easier to forecast a relatively small set of common configurations for distinct classes of target

platforms. The profiles provide a common, easy way to select a UOF configuration of compliant

SCA radios, from an almost infinitely flexible platform with the Full Profile, to a

minimalist,Lightweight Profile, platform where the radio boots and begins executing a single

waveform with little configuration and processing.

3.1.8.3 Use of UOFs and Profiles

Appendix F (reference [6]), similar to many of the other SCA documents, provides a couple sample

conformance statements. The UOFs and Profiles provide the mechanism to align a product’s design

with its mission. The product developer must communicate a product’s capabilities to external

consumers and stakeholders. The following text represents an example conformance statement:

“Product B is an SCA conformant Operating Environment (OE) in accordance with the SCA

Medium Profile containing an SCA Lightweight Application Environment Profile conforming

POSIX layer and an SCA Full CORBA Profile transfer mechanism”.

In this example the statement contains an explicit reference to a profile (Medium). Figure 21 dictates

the approximately 226 requirements that are applicable requirements for this product. The Medium

profile contains the Management Registration, AEP Provider and Deployment UOFs and the specific

requirements are identified in the SCA Appendix F Attachment 1: SCA Conformance mapping

spreadsheet.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

36
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 21 SCA Profiles with OE Units of Functionality

The sample conformance statement could be refined to include additional units of functionality as

follows: “Product B is an SCA conformant Operating Environment (OE) in accordance with the

SCA Medium Profile which contains an SCA Lightweight Application Environment Profile

conforming POSIX layer and an SCA Full CORBA Profile transfer mechanism, and extended by

the Log Capable, Log Producer and Event Channel UOFs”.
The majority of the SCAs ability to be tailored resides within the optional UOFs. At the

BaseComponent level 14 standardized capabilities and approximately 81 requirements exist that could

be applied to a component.

The SCA was not developed with the intent of excluding a mandatory unit of functionality from a

profile. The likelihood of having to do so now is unlikely as the profiles do not include that many

UOFs, however the profile concept is still developing so the benefits of utilizing that type of

strategy will need to be evaluated if the need arises.

3.1.9 Late Registration

Component registration is accomplished using a push model approach as described in Section 3.2.

The SCA components which provide a registration capability are the

ApplicationFactoryComponent, DeviceManagerComponent and DomainManagerComponent,

In most instances component registration follows a standard pattern; a component registry, that is

associated with a manager component, comes into existence, the manager component deploys all of

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

37
Distribution Statement on the Cover Page applies to all pages of this document.

its components which subsequently register with their deploying component via its associated

registry, the manager component takes whatever actions are necessary to finalize the registration.

3.1.9.1 Application Registration

Figure 22 illustrates what occurs when an application is deployed on a platform. After the

ApplicationFactoryComponent deploys each ManageableApplicationComponent, the deployed

component registers with the ApplicationFactoryComponent. Upon successful application creation,

the ApplicationFactoryComponent returns an ApplicationManagerComponent which contains

information describing all of the application’s components. Both the values of the

ApplicationFactoryComponent and the created ApplicationManagerComponent are stored within

the DomainManagerComponent.

Figure 22 Application Component Registration

3.1.9.2 PlatformComponent Registration

PlatformComponent registration behaves in a similar manner as illustrated in Figure 23. Typical

deployment of a PlatformComponent is initiated by a DeviceManagerComponent. As each

PlatformComponent is instantiated it registers with its deploying DeviceManagerComponent. The

“registration finalization” activity for PlatformComponent registration occurs when a

DeviceManagerComponent registers with a DomainManagerComponent. A feature of

DeviceManagerComponent registration is that in addition to registering itself, any

PlatformComponents that have previously registered with the DeviceManagerComponent are

registered with the DomainManagerComponent.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

38
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 23 Platform Component Registration

3.1.9.3 Late Registration

Within SCA, late registration is defined as any PlatformComponent registration that occurs after

the initial registration of its associated DeviceManagerComponent. According to this definition

there are several scenarios which fall under the classification of late registration. The model

scenario for late registration is associated with plug and play components that are introduced within

a platform after the system has been up and running. A nuanced scenario arises in the typical

deployment approach. SCA does not have a mandated time when a DeviceMangerComponent has

to register so it would not be far-fetched to envision a situation where that manager would deploy

15 components and register with its DomainManagerComponent after 10 of the deployed

components had registered with it. Fortunately, the design of the ComponentRegistry interface and

the registration strategy is flexible enough that it can accommodate both scenarios. There have been

suggestions that the approaches to regular and late registration are duplicative and the regular

approach should be removed. The claim is a reasonable one but we have chosen not to take any

action within the specification until the relative merits of both approaches have more concrete data

upon which to make a determination about a way forward.

Figure 23 also illustrates the late registration scenario. In the example Device n+1 registers after the

DeviceManagerComponent registered with the DomainManagerComponent. As a result, the

DeviceManagerComponent implementation needs to recognize that is has already registered with

the DomainManagerComponent and this is a new component registration. Once that determination

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

39
Distribution Statement on the Cover Page applies to all pages of this document.

has been made, the DeviceManagerComponent is responsible for registering that component within

the domain. The DeviceManagerComponent adds the registering component to its set of registered

components and forwards the registration. The only modification made by the

DeviceManagerComponent is the addition of an entry within the PlatformComponent’s

specializedInfo which indicates its associated DeviceMangerComponent; this information is used

by the DomainManagerComponent as it registers the component.

3.1.10 Enhanced Process Collocation Support

Applications across all device categories continue to require better performances. Two main trends

are driving the embedded device market today:

• Smaller form factors

• Improved performance per watt

However, traditional methods of achieving better performances via higher clock frequency lead to

increased thermal dissipation and energy requirements. Multicore technology provides an

alternative solution which improves performance per watt ratios and reduces board real-estate

requirements.

This SCA release introduces support for enhanced process collocation and core affinity

architectures within the framework. Core affinity is defined by its constituent parts –

• core = a complete set of registers, execution sets, etc. that are needed to execute a program

• affinity = the state of being bound to a specific logical processor

3.1.10.1 Background

POSIX Operating Systems support dynamic loading of libraries and dynamic creation of threads

within an OS process address space, thus allowing threads to be dynamically added to an OS

process. Furthermore, today’s operating systems support multi-core processors and different

techniques to execute processes/threads across different cores.

Multi-core processors can operate using one of two approaches. Symmetric Multi-Processing

(SMP) has a single operating system which controls more than one identical processor/core. In

SMP, all processors/cores must be able to access the same memory and the same I/O devices.

Multiple operating systems are used within Asymmetric Multi Processing (AMP), where one

operating system exists for each processor/core. There is a great deal of flexibility within this

approach as operating systems do not need to be the same and their processors/cores do not need to

be identical.

Given the choice; SMP is the better alternative when communication speed between cores is

critical or the workload needs to be distributed dynamically across processors or cores, while AMP

is better in situations when communication speed between cores is not critical and more than one

operating system is present.

Most common Operating Systems support SMP using a scheduler which allocates each task to a

core while only a limited number support AMP. Real-time operating systems provide users with

the ability to influence the scheduling of time-critical tasks. This ability is generally offered as part

of core affinity.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

40
Distribution Statement on the Cover Page applies to all pages of this document.

3.1.10.2 Earlier SCA Capabilities

Prior to this extension SCA provided the ability to collocate either (all) platform or application

components within the same OS process address space using a factory component but the factory

was not able to create both types of components within that process. In addition, factories were

somewhat static in nature as they are preconfigured with the types of components that they can

create. SCA also provided limited support for multi-core devices deployment via the

ExecutableDeviceComponent. The system designer was able to model the platform using either a

single ExecutableDeviceComponent per core or one component for multiple cores. Using either

strategy allowed the framework/OS to make the determination of where each executable should be

deployed.

3.1.10.3 Enhanced SCA Capabilities

The process collocation enhancements provides support for the following features:

• executable Device Component dynamic threading.

• mixing ApplicationComponent and PlatformComponent threads within the same OS

process space.

• multi-core devices deployment via core affinity requirements.

Affinity was introduced because it introduces a valuable capability within the framework,

represents the most basic SMP scheduling technique and is widely supported by embedded

operating systems. The proposal does not introduce any more advanced scheduling techniques

because their implementations are more proprietary in nature. However, core affinity can be

extended to support more complex designs such as core reservation by only allowing a single task

to have an affinity for the reserved core and not allowing any of the other tasks to use that core.

Core affinity complements the existing SCA capabilities which govern component deployment.

Candidate DeviceComponents that can host a component are selected by using any allocation

properties, allocation properties, deployment channels, etc. identified by that component. After

those items are evaluated and processed a target ExecutableDeviceComponent is selected. Any

existing affinity preferences that accompany that component are then passed to the

ExecutableDeciveComponent which, if it supports the capability, is responsible for mapping those

requirements to the underlying operating system.

3.1.11 Self-Launching Components

Self-launching PlatformComponents are those which come into existence in a manner other than

being deployed by a DeviceManagerComponent. These components are often associated with plug

and play scenarios, however they could also be employed as part of a routine system startup. Once

a platform component that will be managed by the framework is launched it is subject to all of the

PlatformComponent requirements.

The primary issue to be addressed related to self-launching components is if/how they are

associated with the framework. SCA does not dictate an approach for this situation so a system

designer will need to use an implementation specific approach to associate the two components and

provide an endpoint that the PlatformComponent can use to register. The component registry

location could be provided via approached such as a property, within a designated file or as an

argument to the component’s executable file.

When the component registers, it is responsible for providing a ComponentType argument to the

registercomponent operation. As an SCA component the self-launching PlatformComponent will

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

41
Distribution Statement on the Cover Page applies to all pages of this document.

have a companion set of descriptor files (profile). The PlatformComponent will populate the

ComponentType parameter either with information from the profile, it does not necessarily have to

parse the profile, or corresponding information that it received through its execute parameters. If

the PlatformComponent does not populate its allocation properties then the

DeviceManagerComponent with which it registers will satisfy that requirement.

3.2 DESIGN GUIDANCE

3.2.1 CORBA profiles

3.2.1.1 Guidance on the use of Any

On systems with limited resources, the use of the OMG IDL Any data type should be minimized.

The Any data type should not be used within the data path or in situations with demanding

performance requirements. When an Any type must be used, it should be associated with a simple

type. The CF::Properties data type is the only SCA construct that contains an Any data type within

its data structure definition.

3.2.1.1.1 Rationale for restrictions on the use of Any

The Any data type should be avoided due to the significant performance and resource consumption

implications that it may levy on method calls that use them. Many ORB providers supply insertion

and extraction operations for known simple types and transport them without large TypeCodes that

can increase message sizes significantly (in some cases the type information can more than double

the size of the messages). The potential size implications are even greater for complex types, the

CORBA compiler must generate code for insertion and extraction and add it to each component

using the interface as well as adding the type information to each message.

The additional size and processing complexity associated with marshaling and unmarshalling

utilizes resources that could be better directed towards providing application critical capabilities.

It is not necessary to find an ORB that does not support complex types in Any, or to remove the

capability from a commercial product because the majority of resource savings are achieved

because an Application does not use a capability, not from its absence. For example, in user

defined IDL types the Any capability is turned on when the operator is generated by the IDL

compiler and used by the code. However, some ORBs do have the ability to optimize for size by

only including the Any capability when it is linked with an application through the use of a

modular architecture.

3.2.1.2 Guidance on the availability of commercial ORBs implementing these profiles

Initially there may be few, if any, commercial ORBs available that provide an implementation

tailored in accordance with the SCA specified profiles. With few noted exceptions, the Full and

Lightweight CORBA profiles are proper subsets of the CORBA/e Compact profile [3]. This means

that a processing element with sufficient resources could use a CORBA/e Compact ORB, support

nearly all permitted Application features and require minimal porting effort.

3.2.1.3 Use Case for the Lightweight profile

The Lightweight profile is intended for extremely limited processing elements, such as most DSPs,

and assumes an approach for implementing SCA components (ManageableApplication or Device)

that strives to maximize performance and minimize resource utilization. In order to avoid resource

intensive features of the SCA for component management, such as the

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

42
Distribution Statement on the Cover Page applies to all pages of this document.

ManageableApplicationComponent’s inherited LifeCycle interface, the Lightweight profile

accommodates partially realized SCA components, Figure 24, or scenarios where the complete

SCA component implementation is split between an extremely limited and a somewhat less limited

processing element.

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform Specific
Transport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport

<<MAC>>
C

<<MAC>>
D

<<MAC>>
 B

Processing Element Processing Element

<< MAC>>
F

MAC = ManageableApplicationComponent

Component D is CONTROLLABLE/INTERROGABLE

Figure 24 Lightweight Component in Lightweight profile

It is assumed that the requisite component management functions for the

ManageableApplicationComponent under development are realized on the less limited processing

element and only port implementations (such as traffic data handling) are realized on the limited

processor, Figure 25.

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform Specific
Transport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport

:C
<<MAC>>

D
<<MAC>>

 B

Processing Element Processing Element

<< MAC>>
F

MAC = ManageableApplicationComponent

Component C contains the realization of a Component B provides port

CORBA

connectivity

Figure 25 Component distributed across multiple processing elements

An alternative approach for applications is for an ApplicationControllerComponent to manage a

component directly, i.e. not using a BaseComponent’s port. In that scenario the permitted data

types and method calls are restricted to those necessary for the port implementations. Note that

some current standard APIs such as, Audio Port Device and GPS Device would need to be

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

43
Distribution Statement on the Cover Page applies to all pages of this document.

modified to follow these constraints. Coordination between the lightweight and management

portions of a component is outside the scope of this recommendation and not required to use

CORBA.

Components may need to be deployed on even more limited processors such as FPGAs or have

interfaces to other components on such processors, Figure 26.

Processing Element MHAL Computational Element MHAL Computational ElementProcessing Element

GPP 1 DSP 1 FPGA 1

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform Specific
Transport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport
Platform -

Specifi
cTransport

Platform -
Specifi

cTransport

Platform Specific
Transport

<<MAC>>
C

<<MAC>>
D

<<MAC>>
 B

Processing Element Processing Element

:F

MAC = ManageableApplicationComponent

Component F contains the realization of a Component B provides port

Component F also has additional restrictions on it’s data types

CORBA

connectivity

Figure 26 Distributed component with FPGA portion

Compatibility will be enhanced in these instances if data types are restricted to those realizable on

such processors. Therefore, components implementing the lightweight profile are encouraged to

avoid using the data types discouraged and marked with * in the table of Attachment 1 to Appendix

E-2 (see reference [4]).

3.2.1.4 Guidance on restriction interface data types

It is recommended that data types be restricted in any interface to modules implemented on

extremely limited processing elements such as FPGAs and most DSPs.

Interfaces to code modules implemented on extremely limited processing elements, such as FPGAs

and most DSPs, whether or not they are implemented in CORBA, are encouraged to refrain from

using the data types marked with * in the Lightweight CORBA profile.

This recommendation is intended to enhance portability of CORBA to non-CORBA

implementations and to ensure that data can be exchanged easily between CORBA and non-

CORBA components.

3.2.1.5 Rationale for CORBA feature inclusion in the profiles

The choice to include CORBA features in the profiles was driven by use cases. Some of these use

cases are listed along with columns comparing Full with minimumCORBA and CORBA/e

Compact in Attachment 1 to Appendix E-2 (see reference [4]).

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

44
Distribution Statement on the Cover Page applies to all pages of this document.

3.2.2 SCA Waveform Construction

3.2.2.1 Overview

The SCA component structure contains a collection of building blocks that a product developer can

combine in order to produce a deliverable, e.g. a waveform or service implementation. The process

of creating an end product requires a series of engineering decisions, which from an SCA

perspective are centered on decomposing the overall product functionality into encapsulated

elements that can be integrated with the defined SCA components.

3.2.2.2 FM3TR waveform example

The publicly available FM3TR waveform architecture is illustrated in Figure 27 (this waveform is

available from the JTNC Open Source Information Repository [13]). The yellow-colored

components represent radio set functionality, whereas the red and blue colored blocks represent

waveform software components.

SCA contains component definitions that should be used for each macro-sized component. Any of

the macro-sized waveform components, for example the Data Link Control (DLC) component,

could be implemented by aggregating several smaller modules or routines, but those routines would

be bundled and it would only expose functionality to external users via a consolidated set of

interfaces.

SCA utilizes a “port” construct as the mechanism by which a component may be extended to

provide application specific functionality and behavior. The blue and red

ManageableApplicationComponents on the GPP expose: in, out, and control ports. The core

framework can connect the port interfaces to other ApplicationComponents or

BasePlatformComponents in order to provide overall waveform functionality. Generally, the ‘in’

ports are described as ‘provides’ ports, whereas the ‘out’ ports are ‘uses’ ports, because they either

provide or use port connections, respectively.

Using either the middleware services provided by the radio set, or direct C++ pointers, connection

IDs and object references permit independent software components to communicate. The

components only need each other’s pointer or object reference. The messaging becomes more

difficult if the components are distributed into separate memory partitions. For such deployments,

middleware services provide a general solution to be applied throughout the complete radio set.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

45
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 27 Example FM3TR SCA Waveform Design

The FM3TR waveform is a simple time domain multiplexed access (TDMA) application with

Continuous Phase Frequency Shift Keying (CPFSK) as the baseband modulation. The JTNC

implementation provides either data or voice operation. Continuously Variable-Slope Delta

modulation (CVSD) is implemented for the vocoder. Reed-Solomon (R-S) forward error coding is

used to improve the bit reliability of the wireless link.

The Data Multiple Access Control (MAC) is an SCA ManageableApplicationComponent that

converts the input data stream into data symbols grouped to match the R-S coding format. The

voice MAC performs a similar operation for the data stream produced by the vocoder. The A-code

is a simple 32-bit synchronization code used to synchronize transmitter and receiver. The S-code is

a second synchronization word used to identify data packet types such as voice, data, etc.

The architecture and deployment of this waveform is fairly typical for SCA implementations,

although other variations are possible. In this example, the waveform components deployed on the

FPGA and DSP do not have SCA interfaces. Historically radio architects have attempted to wring

the last drop of performance from the DSP and FPGA devices and not implemented SCA interfaces

on these lower-level software components. There is a substantial cost for this strategy – a loss of

portability for these waveform components. However, advances have made extending the full SCA

model beyond the bounds of the GPP much more technically feasible.

An example logical model of an FM3TR radio is illustrated in Figure 28, complete with radio

devices, services, and core framework components.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

46
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 28 Example Deployment of FM3TR

3.2.3 Static Deployment

3.2.3.1 Overview

The earlier approach to SCA deployment uses a strategy that emphasizes the framework’s dynamic

capabilities. Within the deployment model the ApplicationFactoryComponent creates software

components by sending instructions to DeviceComponents representing the processors. After the

components have been instantiated, the ApplicationFactoryComponent sends “connect” commands

to the components, providing them with the object references necessary for communication with

the desired component. The ApplicationFactoryComponent then reads the Software Assembly

Descriptor (SAD) file to ‘wire’ the waveform together.

The deployment strategy is very flexible and is well suited to scenarios featuring target platforms

that need to accommodate a wide breath of candidate architectures. On the flip side, the flexibility

comes at a price because deployment performance (i.e. speed) can suffer when there are multiple

permutations of devices and configurations that can host an application. SCA has been extended to

provide additional guidance regarding how to improve deployment performance. One improvement

is the deployment optimizations, a second introduces language that allows a platform to preprocess

its domain profile files, thus reducing the need for xml parsing or processing to occur as part of

deployment. This SCA release provides yet another optimization with the introduction of a

common approach for static deployment.

3.2.3.2 Deployment Background

Figure 29 illustrates the steps that need to take place for application deployment to occur.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

47
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 29 ApplicationFactory Role in Component Deployment

1. Developer creates individual system components

2. Platform engineers and developers identify system configuration

3. Platform provider integrates system

4. Platform provider packages and delivers product

5. Platform user / administrator deploys application

6. User uses application

Static application deployment is characterized by the framework not having to make deployment

decisions or receive assistance during the process of establishing connections between

ApplicationComponents. Having limited or no responsibilities during either of those activities

expedites the deployment process because the number of decisions the framework needs to make

during application instantiation are minimized.

3.2.3.3 Connection Management

SCA permits legacy (i.e. pre-SCA 4.1) connections to be established within a platform. This is

accomplished by having an ApplicationFactoryComponent query each

ManageableApplicationComponent for its provides port connection IDs and then send those IDs to

the components that require the connection endpoint. While this is similar to the earlier SCA

connection mechanism, it requires a slight modification of a legacy application. A second

alternative has components return their connection IDs upon registration, thus eliminating the

communication traffic required by getProvidedPorts(). This method is not as flexible as the first

and does not support plug and play components, but it improves waveform startup times. A third

approach could be employed in a more static scenario where an ApplicationFactorComponent

receives connection information generated at build time from the domain profile files. Within this

scenario, the ApplicationFactoryComponent would not require registration from the deployed

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

48
Distribution Statement on the Cover Page applies to all pages of this document.

components because the target configuration would already be known. Fully realized, this approach

would result in pre-wired applications that are ready for operation upon instantiation.

3.2.3.4 Example

This example usage of static configuration is subject to the following constraints:

1. The application does not utilize the enhanced deployment capabilities

2. The application does not create any of its components via an

ApplicationComponentFactoryComponent

Application installation is identical to how it has always been executed, with the objective of

transferring application software onto the platform. The application uses the platform capacity

management mechanism and model with the assumption that the application to be deployed will fit

on the desired target processing element. The application uses the ApplicationFactory::create

operation deviceAssignments parameter, the value needs to be provided by the system developer,

to target a ManageableApplicationComponent to a specific DeviceComponent (eliminating the

need for the ApplicationFactoryComponent to determine where to deploy the component). Using a

variation of the third connection approach described in the previous section, the developer will

populate the SAD with a value in the providesport element’s stringifiedobjectref attribute. This

value implies that the ApplicationFactoryComponent will know the provides port location. (Note:

A determination was made that given the existence of the aggregated connectUsesPorts operation

there was not a significant improvement that would be realized by adding a static capability to

supply uses port information).

A fully static approach which would eliminate the need to call the deployment machinery would

require uses port information to be integrated within the deployed component as well. However, the

current thinking is that any potential performance improvements associated with that approach are

outweighed by its lack of flexibility.

3.2.4 Application PIM Profiles Conformance Benefits

SCA Appendix E-1 specifies profiles for SCA to use which enable application Platform

Independent Modeling (PIM). The profiles identify a set of Object Management Group (OMG)

IDL features that are available for use in the definition of application specific interfaces.

Technically speaking, the definition of application APIs is beyond the bounds of the SCA, but it is

an important topic for the specification to address when looking at the broader relationship of

individual elements within an SCA compliant implementation and the degree to which they

contribute to a system meeting the original JTRS objectives.

3.2.4.1 Application Conformance

Application conformance with one of the applicable IDL Profile enhances the ability of an

application’s design to be “loosely coupled” to its implementation. While there are many factors

that contribute to portability, the incorporation of the guidance provided within the specification

can increase portability significantly.

The generic definition of Portability is “the quality or state of being portable” where portable is

“easy to carry or move around”. The definition is applied within Computer Science as “a

characteristic attributed to a computer program if it can be used in an operating systems other than

the one in which it was created without requiring major rework”.

While it is not explicitly stated, it could be inferred that SCA enhances portability within a

somewhat homogeneous environment. When applications are designed in accordance with IDL

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

49
Distribution Statement on the Cover Page applies to all pages of this document.

profiles, their underlying designs become more portable because they are better able to reside in

heterogeneous environments, where there are multiple processor families and/or different

programming languages.

Designing applications in accordance with the IDL profiles enables an application to be moved to a

different processor environment or a subcomponent to be moved to or replaced by a different

implementation within an alternative target environment, while maintaining the integrity of the

application’s design.

3.2.4.2 Engineering Tool Conformance

The benefits of using engineering tools within a software development process are well known and

understood. The primary benefits are related to productivity and quality. Tools can perform code

generation and relieve developers from having to perform some of the rote tasks related to the

process of moving from the design to implementation phase of a project. This automation not only

performs the step quickly but the code is less error prone and many products have been tuned to

optimize the performance of the generated code.

The existence of tools can be particularly useful for organizations that are in the early stages of

initiating development activities in a new environment. Tool vendors have developed expertise in

the tools and techniques available for all of their target environment and they are able to share that

knowledge to jumpstart an organization.

Tools can also enforce compliance with the specification. Ensuring that the developed products are

compliant with the specification will allow them to fully take advantage of the associated benefits.

3.2.5 IDL PSM Constraints

Within the IDL to Language Specific Mappings section of the SCA Platform Specific Model –

Language Specific Mapping [add reference] appendix, several constraints related to the Standard

IDL to language mappings. The first constraint is that “The OMG C and CPP IDL to language

mappings generate language elements within the CORBA name space.”. While this is true, there

are strategies that a developer may use that would allow them to use Standards compliant tools and

still be able to develop code that maximizes reusability and is platform independent such as the

following:

• avoid IDL features such as Any or object which have a high correlation with CORBA

specific features.

• modify any structures within the IDL generated code that use the CORBA name space to

use the SCA CF::Primitive and Primitive Seq Types.

Taking a few simple actions such as these will permit a product developer to produce SCA

compliant, language PSM artifacts quickly and correctly using commercial/open source products.

3.2.6 Organization Specific SCA Tailoring

SCA provides a framework and within that framework there are numerous was to combine the

framework elements and have an end result that aligns completely with the specification’s

structural and semantic requirements. The introduction of Lightweight Components within the

specification was beneficial because it provided a compliant approach for SCA interfaces to be

combined to develop products that are highly aligned with a specific mission. The drawback of that

approach is that it no longer has a uniform set of interfaces. Figure 30 illustrates the definition of a

DeviceComponent.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

50
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 30 Device Component Definition

An organization could decide to use the SCA defined component definition as a starting point.

After analysis they might determine that only the DeviceComponent level UOFs (i.e.

AGGREGATABLE, INTERROGABLE, MANAGEABLE, and ALLOCATABLE) were needed

within their implementation. Consequently, the following IDL interface would be used within their

system:
interface MyOrganizationDevice : DeviceAttributes,

AdministratableInterface, CapacityManagement,

AggregateDeviceAttributes, Lifecycle

When that component that realizes the MyOrganizationDevice interface is integrated into a

platform, its executable will be deployed by a DeviceManagerComponent and the resulting

DeviceComponent will register with that manager. The Core Framework narrows the object

reference provided in the registered ComponentType data structure to obtain information from the

component. The following code snippet,
ComponentType myCoreFramework,

myCoreFramework.componentObject.allocateCapacity(…);

is representative of an approach that could be used to allocate capacity on this device as part of the

ApplicationFactory application component deployment process.

This is a perfectly functional, compliant approach to take, but the composition of the

MyOrganizationDevice interface cannot be known ahead of time by a (general purpose) Core

Framework implementation, and without careful coordination the exact structure and content of

that interface will not even be known within the organization.

3.2.6.1 Organization Specific Interfaces

In instances where the organization, community of interest, domain specific group, etc. knows that

it will be using a common definition, they could decide to define a layer of interface definitions

which resides above the SCA defined constructs. Figure 31 shows a representation of the

OrganizationDeviceInterface interface that could be defined and maintained within the

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

51
Distribution Statement on the Cover Page applies to all pages of this document.

organizational group boundary. Similar to the prior example, this interface would have associated

metadata that stated that OrganizationDeviceInterface supports the DeviceComponent level UOFs

(i.e. AGGREGATABLE, INTERROGABLE, MANAGEABLE, and ALLOCATABLE).

Figure 31 Definition of an Organization Specific Interface

The following code represents the OrganizationDeviceInterface IDL.
interface OrganizationDeviceInterface : DeviceAttributes,

AdministratableInterface, CapacityManagement,

AggregateDeviceAttributes, Lifecycle

3.2.6.2 Organization Specific Components

Our example organization might also decide to define a set of organization specific components.

The organization could use their own interface and the corresponding model would look similar to

that in Figure 32.

Figure 32 Use of an Organization Specific Interface

As a byproduct of the incorporation of the OrganizationDeviceInterface interface, the component

used in the implementation would still represent the DeviceComponent level UOFs (i.e.

AGGREGATABLE, INTERROGABLE, MANAGEABLE, and ALLOCATABLE) but the IDL

would have a slightly different appearance
interface MyOrganizationDevice : OrganizationDeviceInterface,

Lifecycle

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

52
Distribution Statement on the Cover Page applies to all pages of this document.

3.2.6.3 Organization Specific Components - Alternatives

The pattern presented by the previous examples could be reused and extended almost infinitely. If a

basic set of rules and relationships are followed then all of these permutations would result in the

development of component vocabularies that could be standardized within the bounds of a

“community” yet remain SCA compliant. As a final example, recall the SCA BaseComponent

definition.

Figure 33 Base Component Definition

Also, recall that DeviceComponent has an inheritance relationship with a BaseComponent via

BasePlatformComponent. Using the techniques described earlier in this section, an organization

could describe their own collection of interface and component definitions and combine them

together using a model similar to the one in Figure 34.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

53
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 34 Model of an Organization Specific Component

If the group determined that they wanted the component to support the following UOFs:

MANAGEABLE, CONTROLLABLE, CONFIGURALBE, CONNECTABLE – (i.e. not

AGGREGATABLE, INTERROGABLE (DeviceComponent), ALLOCATABLE, RELEASABLE,

INTERROGABLE (BaseComponent), or TESTABLE). They would implement/define a set of

interfaces with a representation of
interface MyOrganizationDevice2 : ControllableInterface,

AdministratableInterface, PropertySet, PortAccessor, Lifecycle

or
interface MyOrganizationDevice2 OrganizationDeviceInterface**,

ControllableInterface, PropertySet, PortAccessor

3.2.6.4 Summary

The optional composition pattern employed by SCA Lightweight Components represents a vast

departure from the interface definition approach used in SCA 2.2.2. SCA no longer has a singular

set of interfaces that applications (truly all components) must adhere to. This shift places an

additional responsibility on a Core Framework implementation since it is no longer able to make

assumptions regarding the high level interfaces supported by a component or the set of interfaces

realized by any given component. However, on the flip side it provides component developers with

an additional tool that can be employed to define mission specific interfaces to be employed within

a development project.

The examples provided within this section provide just a few techniques that could be used within a

company / department / problem domain / enterprise / … to introduce more uniformity of

implementations or underlying components or interfaces. The structure and content are such that

they can comfortably accommodate SCA compliant, layered interpretations which could at some

point evolve into official or de-facto standards.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

54
Distribution Statement on the Cover Page applies to all pages of this document.

3.2.7 Sample Waveform Architecture and Considerations

The publicly available APCO-25 waveform [13] provides a representative example architecture for

a simple waveform. This waveform was developed by the California Institute for

Telecommunications and Information Technology (CALIT2) with support from Joint Program

Executive Office (JPEO) Joint Tactical Radio System (JTRS) through SPAWAR Systems Center

Pacific.

APCO-25 is a suite of standards to provide interoperable digital radio communications between

North American federal, state/province and local public safety agencies. The project specifies a

narrowband waveform with two phases of Vocoder and Channel access scheme implementation

approaches. Phase 1 waveforms use a 12.5 kHz bandwidth channel, with Frequency Division

Multiple Access (FDMA) access methods and the Improved Multi-Band Excitation (IMBE) voice

codec. Phase 2 uses a 6.25 kHz bandwidth channel with a 2-slot Time Division Multiple Access

(TDMA) access scheme and the Advanced Multiband Excitation (AMBE)+2 voice codec for a

reduced bitrate. APCO-25 also supports secure communications through the use of encryption, key

management and equipment authentication.

The CALIT2 Encryption Framework [14] describes the high level platform and waveform

architecture, shown in Figure 35.

Figure 35 High Level APCO-25 Architecture

The waveform components (dark blue) assemble and extract P25 frames and directs the output to

the appropriate output device be that and audio output, graphical user interface or antenna.

The Platform Infrastructure elements (grey) provide a variety of functions:

• the Audio Device captures inputs through the microphone and plays them through a

speaker.

• the Vocoder provides voice encoding and decoding as well as additional features such as

DTMF, single tone detection and voice activity detection. Forward Error Correction (FEC)

encoding is applied to the encoded speech frames and FEC decoding is applied to the

received, FEC encoded speech frames before decoding and synthesizing.

• the Modem is software-based implementation of Continuous 4 level Frequency Modulation

(C4FM) consisting of a bits-to-symbol conversion module and a modulator/demodulator

module.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

55
Distribution Statement on the Cover Page applies to all pages of this document.

• the Encryption Device changes information from one form to another in an attempt to hide,

and then restore, its meaning. Within data communications it transforms raw data to cipher

text data in order to make it unintelligible to unauthorized persons.

• the Universal Software Radio Peripheral (USRP) is a Software Defined Radio provided by

Ettus Research. The USRP provides all of the basic components, e.g. ADC, DAC, that are

required for baseband processing of signals.the bulk of the Core Framework

implementation (not shown in the figure) resides on the GPP.

Figure 36 represents the collection and connection of SCA components required to implement the

architecture.

Figure 36 APCO-25 Platform Components

The interaction between the components are described by the following scenarios:

Transmit Scenario

1. The radio's User Interface (Java GUI) initiates voice communications via the Push to Talk

button

2. A control packet is sent to the activate the Vocoder to accept data from the Audio

3. Device

4. The Vocoder generates FEC encoded Link Control (LC) information using data from the

control packet.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

56
Distribution Statement on the Cover Page applies to all pages of this document.

5. The Sound Card sends audio data to the Vocoder

6. The Vocoder encodes and performs FEC

7. The Vocoder sends the data to the P25 Transmitter

8. The P25 Transmitter assembles the data into frames along with the LC and other control

information

9. The frames are sent to the modem for baseband processing and modulation

10. The modem sends the processed information to the USRP for transmission

Receive Scenario

1. The USRP downconverts the received signal from the carrier frequency and sends it to the

modem

2. The Modem resamples, demodulates and decodes the data

3. The Modem sends the decoded P25 frames to the P25 Receiver

4. The P25 Receiver extracts the LC, other control information and the voice data.

5. The P25 Receiver sends the voice data is sent to the Vocoder

6. The Vocoder decodes the data

7. The Vocoder sends the audio data to the Sound Card for playback

8. The LC and other control information are extracted from the P25 frame are sent to the Java

GUI

The execution scenarios are similar when encryption is requested from the GUI. In that case,

control information is sent to the Vocoder components to inform them of the encryption request. As

data is processed, the AMBE encoded voice data is sent to the Encryption Device prior to FEC

encoding during transmission and the encrypted AMBE encoded voice data is sent to the

Encryption Device for decryption before AMBE decoding during reception. The P25 Transmitter

and P25 Receiver also interact with the Encryption Device. These components exchange control

data for encryption or decryption, as appropriate, during the data transmission and reception

processes.

Of course prior to waveform execution, the Core Framework components interact with one another

to deploy and configure the Application and Platform Components. The

DeviceManagerComponent deploys the Platform Components and the Application Components are

deployed by ApplicationFactoryComponent(s). The DeviceManagerComponent’s Device

Configuration Descriptor (DCD) identifies, deploys, configures and connects the Platform

Components that it manages. The DomainManagerComponent may provide a capability to install

applications. Application installation results in the construction of an

ApplicationFactoryComponent which in turn is the mechanism to create, instantiate, an application.

Each Application has an associated Software Assembly Descriptor (SAD) which describes its

components, connections and attributes.

Each Platform and Application Component will have an associated Software Package Descriptor

(SPD) and referenced domain profile files. SCA was designed to promote the development of

portable applications, so an application’s domain profile is largely independent from Platform

Components. Keeping with the SCA philosophy, any dependencies between the elements are

communicated via well-defined constructs, e.g. the SPD usesdevice element which provides a

mechanism to specify a device in the system that supplies a capacity or required capability or the

SAD connection element which allows an application to specify a connection endpoint.

Capacity Management is an important feature within the SCA. Our example APCO-25 waveform

requires C4FM modulation and AMBE Vocoding. Those capabilities could be delivered as

waveform components, but that would compromise the waveform’s independence. A more portable

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

57
Distribution Statement on the Cover Page applies to all pages of this document.

solution would be to select (collaborate with if necessary) a Platform Component that provides the

requisite functionality. The Platform Component could advertise the existence of that feature as an

allocation property and then the Application Component could require the presence of that

capability.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

58
Distribution Statement on the Cover Page applies to all pages of this document.

3.3 SCA MODIFICATIONS

3.3.1 Resource and Device Interface Refactoring

3.3.1.1 Overview

This release reworked the SCA 2.2.2 Resource and Device interfaces as a component of the other

changes that occurred within the specification. Two primary changes occurred; the first of which

decomposed the interfaces into more specialized, lower level interfaces; the second removed the

Resource, Device, LoadableDevice and ExecutableDevice interfaces. The existence of the finer

granularity interfaces provides the developer with the ability to create more secure, lighter weight

components. The net impact of the changes is that the implemented components will support a set

of operations and attributes roughly identical to those of the legacy interfaces, e.g. Resource,

however they will require modifications to accommodate the new structure. The changes should be

straightforward and minor in nature, e.g. changing the format of an operation invocation, and not

require the introduction of new logic.

3.3.1.2 Resource Related Modifications

3.3.1.2.1 Resource interface changes

The new structure of the Resource interface supports the SCA optional composition pattern as well

as the least privilege pattern employed within the JTNC APIs. The changes remove the specialized

interface, Resource, and pass the responsibility of determining the inherited Resource interfaces

that will be realized to the component. The flexibility of the approach becomes apparent when it is

evaluated from the provider’s perspective. Figure 37 highlights the Resource interface changes.

The identifier attribute was moved to the ComponentIdentifier interface and the start and stop

operations were moved to the ControllableInterface interface.

Figure 37 Resource Interface Refactoring

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

59
Distribution Statement on the Cover Page applies to all pages of this document.

As seen in Figure 38, the equivalent, inherited Resource interfaces, may be realized optionally by

an Application Component. Having the ability to realize these interfaces allows the component to

be tailored to a product specific set of requirements. Eliminating unnecessary interfaces also

increases the assurance level of the created component because the implementation will not contain

any “dead” code and the finer granularity interface definitions allow the developer to expose only

the interfaces and information that need to be provided.

Figure 38 Application Component Optional Interfaces

3.3.1.2.2 ResourceFactory Interface Changes

The ResourceFactory, pictured in Figure 39, was also refactored. The ResourceFactory interface

modifications take advantage of optional composition in a manner similar to that applied to the

Resource interface, Figure 37, but it has two important distinctions. The shutdown and

releaseResource operations were removed from the interface in lieu of an approach that aligns its

life cycle management with the other CF interfaces, i.e. utilizing the LifeCycle interface. Secondly,

the ResourceFactory interface was not removed, it was renamed to be ComponentFactory. The

ComponentFactory interface was preserved because it retained the createComponent operation and

it was renamed to reflect its new functionality that gives it the ability to create not only

ApplicationComponents but also PlatformComponents.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

60
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 39 ResourceFactory Interface Refactoring

3.3.1.3 Device Related Modifications

3.3.1.3.1 Device and LoadableDevice interface changes

The Device, Figure 40, and LoadableDevice, Figure 42, interfaces were refactored such that they

no longer have an inheritance relationship with one another or the Resource interface. The

refactored components that provide the Device and LoadableDevice interface behavior utilize

optional composition in a manner similar to the strategy used by the Resource interface

replacement.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

61
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 40 Device Interface Inheritance Refactoring

Figure 41 Device Interface Refactoring

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

62
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 42 LoadableDevice Interface Refactoring

3.3.1.3.2 ExecutableDevice Interface Changes

The ExecutableDevice interface, Figure 43, was refactored so that it no longer has an inheritance

relationship with the LoadableDevice interface. The ExecutableDevice operations were moved to a

new interface, ExecutableInterface, which is accessed by the ExecutableDevice component via

option composition. A new feature of the ExecutableDeviceComponent is that now it also can be

optionally composed to provide loading functionality via the LoadableInterface interface.

Figure 43 ExecutableDevice Interface Refactoring

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

63
Distribution Statement on the Cover Page applies to all pages of this document.

3.3.1.4 Summary

The SCA 2.2.2 resource (i.e. application) and device interfaces were refactored to remove many of

the operations and attributes from the top level interfaces and eliminate the inheritance relationship

between those interfaces and the CF::Resource interface. The new interfaces are now accessible at

the component level using the optional composition strategy. The rationale behind relocating the

operations and attributes is to provide a developer with a mechanism to “right size” their

components to align better with product requirements. Elimination of the inheritance relationship

allows the components to circumvent the collocation prohibitions that are discussed in the

Lightweight Components section 3.1.6.

3.3.2 Refactored CF Control and Registration Interfaces

3.3.2.1 Overview

SCA reworked the composition of the control and registration interfaces as part of the

modifications that occurred within the specification. The most significant change was that the SCA

2.2.2 interfaces were refactored into smaller, more concise, standalone interfaces. The composition

of these interfaces ensures that only the methods needed for management and registration of the “to

be constructed” system are provided to consuming components. The presence of these prohibitions

enhances the assurance profile of the platform because it follows the least privilege pattern,

allowing only the necessary interfaces to be available and accessible. The refactoring also improves

platform and system performance because it contains modifications that transform the SCA from a

pull to a push model registration approach. Push model behavior is more efficient because it allows

a component to pass along its information when it is ready and not wait to be called or encourage

additional request, response cycles. The granularity of the information included within the pushes

is also more efficient since the SCA approach now allows all of the component’s information to be

bundled within one push rather than forcing the components to invoke multiple requests for the

same content.

3.3.2.2 DeviceManager Interface Changes

The DeviceManager registration operations, Figure 44, were collapsed and migrated from the

interface. The migration was consistent with the principles of the least privilege pattern since it is

unnecessary for a client that already has a reference to a DeviceManagerComponent to require an

additional interface to obtain an endpoint to register itself. This move leverages the fact that the

only components required to register with a DeviceManagerComponent are those that it launches,

and it is reasonable to assume that the DeviceManagerComponent can provide its registration

address as part of the launch parameters.

The registration process, which had been performed through the DeviceManagerComponent,

DomainManagerComponent and ApplicationFactoryComponent, was refined as part of the

redesign. SCA introduced a single capability, ComponentRegistry that could be associated with and

used by any of those components. Component registration behavior was reworked to leverage a

push model mode of operations which yields substantial performance improvements. Lastly, the

implementation of the registries is much simpler because ComponentRegistry provides a general

purpose registration capability that no longer needs to be tailored to register uniquely either service,

device or application components.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

64
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 44 DeviceManager Interface Refactoring – registration operations

The refactoring removed the DeviceManager attributes from the top level interface. The

predominant usage of these attributes before now was for interrogation by the

DomainManagerComponent as part of pull model registration. These attributes are no longer

needed within push model registration because the registering DeviceManagerComponent provides

its corresponding values as part of registration. The refactored design provides an optional

mechanism for the prior DeviceManager interface’s attributes to be accessible, via the

DeviceManagerComponent’s ComponentType data element, when an implementation finds it

necessary to preserve the possibility of registered components being accessed externally.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

65
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 45 DeviceManager Interface Refactoring – attributes

The DeviceManager interface was removed and its inheritance relationship with the PortAccessor

and PropertySet interfaces, Figure 46, was made optional per the optional composition pattern. The

presence or absence of these interfaces is determined by the DeviceManagerComponent’s need for

connections or implementation specific attributes.

Figure 46 DeviceManager Interface Refactoring – miscellaneous operations

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

66
Distribution Statement on the Cover Page applies to all pages of this document.

3.3.2.3 DomainManager interface changes

The DomainManager registration operations, Figure 47, were collapsed and migrated from its SCA

2.2.2 interface. The rationale behind the changes mirrors that provided for the corresponding

changes in the DeviceManager interface. The DomainManager interface has an additional pair of

registration related interfaces, used expressly for event registration, which were migrated to a new

interface. Moving the event registration operations outside of the DomainManager interface aligns

with the least privilege approach; however, the revised SCA did not integrate those services within

the component registry. The event registration operations remained in a distinct interface because

they have a wider range of potential users, from components launched by a

DeviceManagerComponent to consumers that reside outside of the framework implementation,

many of which should not have access to framework internals pertaining to registered components.

Figure 47 DomainManager Interface Refactoring – registration operations

The DomainManagerComponent no longer needs a separate manager registry since manager

registration was integrated within the component registry. The application installation and

uninstallation operations were also migrated away from the component. This migration was

performed to satisfy scenarios, such as those associated with a static system configuration where no

capability need exist to add or remove applications. Lastly, it should be noted that the

DomainManager attributes were not removed from the interface. The attributes were retained

because the DomainManagerComponent provides the interface between a platform domain and its

external consumers, e.g. an external management system or user interface, and they provide the

access point for those consumers to retrieve specific information regarding the system’s

configuration.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

67
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 48 DomainManager Interface Refactoring – manager registration operations

Figure 49 DomainManager Interface Refactoring – installation operations

3.3.2.4 Application Interface Changes

The Application interface, Figure 50, was refactored such that it removes direct visibility of many

of the interface attributes. These attributes provide a way for clients to interrogate an application’s

run time internals. All of the information contained within the attributes is essential for proper

framework operations, however several scenarios exist for which demonstrate that it is not needed

by clients. Eliminating the interfaces improves system IA awareness and performance in

accordance with the other push model enhancements. The interface was also renamed to

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

68
Distribution Statement on the Cover Page applies to all pages of this document.

ApplicationManager to better align it with its role, providing the framework with a well-known

point from which to manage the independently developed applications that are deployed within a

domain.

Figure 50 ApplicationManager Interface Refactoring

3.3.2.5 ApplicationFactory Interface Changes

This SCA revision provided a window of opportunity to clean up the ApplicationFactory interface,

Figure 51. The ApplicationFactory interface is relatively simple so there were no large

improvements to be achieved by introducing optional composition within the model. However, the

interface had a redundant attribute, identifier, which was removed in order to clean up the interface

specification and the contents of the softwareProfile attribute were moved within the

componentType structure.

Figure 51 ApplicationFactory Interface Refactoring

3.3.2.6 Summary

The revised model of the SCA control and registration interfaces provides a set of access endpoints

that allow a system developer to reduce the size and increase the assurance level of a core

framework implementation. These modifications provide a standardized approach to lower product

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

69
Distribution Statement on the Cover Page applies to all pages of this document.

development costs because there are fewer interfaces and requirements that need to be satisfied

during the development process when unnecessary capabilities are omitted. The cost and size

improvements are a welcome consequence of the revised approach, but the larger benefit is that

SCA now allows a product development team to make intelligent determinations regarding their

system’s architecture and the information it will expose for external consumption.

3.4 WORKING IN AN SCA ENVIRONMENT

3.4.1 SCA 4.1 Development Responsibilities

3.4.1.1 Overview

SCA 4.1 contains several new component and interface definitions. An objective of the evolution

of the specification was for it to provide clarifications that would help readers become proficient

with the documents more quickly by better highlighting areas of interest. SCA 4.1 section 2.2

provides insight by identifying which developers are involved in realizing specific interfaces and

components. Armed with that information a developer is better able to navigate through the

sections of the specification that are a higher priority for their implementation.

3.4.1.2 Component Development Alignment

SCA 4.1 separates descriptions of the components hosted by the radio set from those provided by

waveforms.

Figure 52 General Allocation of Components to Radio Developers

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

70
Distribution Statement on the Cover Page applies to all pages of this document.

SCA components are the elements that will be implemented by an SCA developer. Figure 52

allocates specific components of interest to the various communities of interest (and a designation

for an Abstract Component) that provide products within a radio set architecture.

3.4.1.3 Component Products

The Abstract components encapsulate functionality that is not exposed directly to an external

consumer or provider. Abstract components can be realized independently and used by multiple

user facing components. BaseComponent is an example abstract component. It provides the core

interfaces, relationships and requirements used by other SCA components. BaseComponent

includes associations with the DomainProfile files and many of the fundamental SCA interfaces

such as the LifeCycle interface. Application Developers, Device Developers, Service Developers

and Core Platform Developers all create user facing components that have an inheritance

relationship with BaseComponent, i.e. each of those components are responsible for providing

interface realizations and fulfilling the applicable BaseComponent requirements.

Application Developers provide user facing, software intensive solutions such as waveforms that

are deployed on the radio platform. In most cases a waveform will be delivered as a collection of

Base Application Components. An application consists of an application controller(s), application

components and (optionally) application component factories. The components are typically

deployed separately and provide functionality, capabilities and associations as dictated by their

operational requirements and those provided within the SCA model representations (which

includes any levied by the Operating Environment such as the AEPs or their chosen Middleware).

When the components are deployed separately, even the same component type can have differing

configurations and constructs.

Device Developers provide software abstractions that mediate between system components and the

physical hardware elements. Device Developers provide implementations of the Base Device

Components. The components typically have a one to one relationship with a piece of system

hardware and each one provides the functionality and capabilities dictated by the associations

provided within the SCA model representations. Since Base Device Components need to work with

a specific hardware element there are instances where they cannot be fully portable however it is

advisable that Device Developers make every attempt possible to incorporate techniques and

practices that promote portability.

Service Developers provide software abstractions that provide common functionality for multiple

system components, be they applications, devices or other services. A service can be either a user

facing product or a utility that provides additional capabilities to another system element. Services

are unique within SCA because there are two distinct types of Framework Service Components,

ServiceComponents and ManageableServiceComponents. ManageableServiceComponents should

be used in scenarios where an SCA developer is providing the implementation. Since the developer

is providing the design and implementation they are able to incorporate realizations of the SCA

components and interfaces. ServiceComponents provide the abstraction for integrating capabilities,

such as COTS components, that provide critical system functionality but do not contain source

code that is accessible to the developer. In those cases, the service developer is limited to providing

supplemental artifacts, such as domain profile files, that allow the service to be deployed by the

framework.

Core Platform Developers provide software solutions that provide the essential Core Framework

functionality, device and domain management and application creation and management, to a radio

platform. Similar to device components, Framework Control Components are not explicitly

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

71
Distribution Statement on the Cover Page applies to all pages of this document.

targeted to optimize portability, but by using the SCA constructs it is highly likely that they will be

relatively portable, although they will contain localized areas that reference the radio set specific

operating environment. Typically, Core Platform Developers will be responsible for the selection

and/or integration of platform OE components. The SCA does not constrain the methods in which

Framework Control Components interact with OE components; a difference from the way that

application components interface with the OE, but an OE implementation is still governed by any

applicable software security requirements. It is important to recognize that Framework Control

Components may incorporate a wide array of extensions or enhancements, such as fault tolerant

frameworks, as long as the mandatory capabilities are provided.

3.4.2 SCA Maintanence Process – How To Develop a New PSM?

3.4.2.1 Overview

Figure 53 depicts how a proposed SCA change is handled. Proposed changes could be anything

from minor redlines to introducing a new capability within the specification. Successfully

implementing changes is a collaborative process that involves the change submitter, the Interface

Control Working Group (ICWG) staff, the ICWG working panel and the JTNC. In summary, once

an SCA enhancement is submitted, the working panel will collaborate with the submitter to

determine if or how the enhancement should be integrated within the specification. Once the final

revisions are complete, the ICWG staff will work with the JTNC to develop a strategy regarding

when and how the change will be released. Detailed descriptions of the individual process actions

are beyond the scope of this document but may be obtained by contacting the ICWG staff at jtrs-

sca@spawar.navy.mil.

Figure 53 SCA Change Proposal Process

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

72
Distribution Statement on the Cover Page applies to all pages of this document.

3.4.2.2 SCA Change Proposal Process – Submitter Roles and Responsibilities

SCA has evolved largely based upon inputs, new ideas and lessons learned, from its community of

users. Consequently, inputs from submitters are an essential part of the process. The primary role of

the submitter is to collaborate with the ICWG staff and working panel to communicate the reason

for or rationale behind a change. The submitter will provide the information via a change proposal

form, discussions or documentation. Any information not provided as part of the submission will

be obtained via requests initiated by the working group.

SCA exercises the defined process with a focus on extending the content of the specification as

directed by the user community’s needs and requirements. The SCA 4.1 work began with a PSM

definition, equivalent to that of SCA 2.2.2, a vision of how the specification should evolve and an

outline of an additional PSM. The initial working panel neither had the available staff to define an

additional PSM nor the desire to expend a large amount of effort working on a PSM that would not

be used. Therefore, the group decided to proceed with a “need based strategy” that would wait for a

community of interested users to drive the expansion of additional models.

Using the needs based strategy; a submitter would develop an idea for a new PSM. The proposal,

step 1 within Figure 53, could be an errata statement, a document that appears ready for inclusion

within appendix E or anything in between. The working panel will work with the submitter to

refine the proposal so that it will be ready for presentation to the full ICWG in step 4. Beyond that

point the idea will be fleshed out and refined until it reaches a point where it can be approved in

step 5. Step 5 represents a decision point where the change will be balloted, but practically

speaking it is unlikely that a full version of a new PSM proposal will reach this point if it doesn’t

have majority support of the working panel or ICWG voting members.

A proposal for a new PSM submission should be developed in a format equivalent to that of the

existing appendices. It should include information equivalent to those in the current specs, e.g. if an

XML schema version of the descriptor files were proposed, it should support the capabilities of the

Document Type Definition (DTD) based descriptors. If the new proposal omits some of the

preexisting constructs then those omissions should be interpreted as a prompt to revisit those

elements to see if they should be removed from there as well.

If a submitter were to propose a new transport mechanism, that proposal should strive to present a

solution based on Standard technologies which excludes features detrimental to common wireless

communication device attributes such as performance, sizing or security.

3.4.3 SCA Naming Conventions

The structure and appearance of the new SCA is vastly different from that of SCA 2.2.2. In

addition to the reorganization, the revisions introduced several new elements within the SCA

lexicon.

The introduction of the component model created a collection of new elements that described the

SCA components. SCA 2.2.2 and earlier versions leveraged the component concept, but used text

formatting conventions to distinguish whether or not the interface or the component was being

referenced.

Multiple new SCA features: decomposing the IDL into smaller segments, more widely applying the

principle of least privilege, introducing optional composition within the core framework had a side

effect of creating new interfaces within the specification.

Therefore, the SCA designers perceived this as the best opportunity to overhaul the names of the

existing SCA constructs if it ever was going to be undertaken and felt that this would be a good

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

73
Distribution Statement on the Cover Page applies to all pages of this document.

opportunity to introduce a set of conventions that could influence the naming of any future

constructs.

3.4.3.1 Component Naming Conventions

• “Component” should be at the end of the name to indicate that it is a component. For

example, use “BaseComponent” instead of “ComponentBase”.

• When a component is directly associated with an interface, e.g. CF::ApplicationManager,

the interface name is the beginning of the component name so this example becomes an

ApplicationManagerComponent.

• Use “Base” as a prefix for the name of a conceptual/generic/abstract component, e.g.

BaseComponent.

• Use a descriptive noun which describes the role of the component, e.g. DeviceManager,

when a component does not have a corresponding interface.

Figure 54 SCA Components

3.4.3.2 Interface Naming Conventions

• Use nouns for interface names – component level interface names should describe the role

of the interface, the prefix of sub-component level interfaces should be an adjective which

describes the function provided by the interface.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

74
Distribution Statement on the Cover Page applies to all pages of this document.

• Do not include words that conflict with the function of an interface, e.g. “object” or

“component” within the name – therefore TestableObject was switched to

TestableInterface.

• “Interface” should be at the end of the name to indicate that it is a sub-component level

interface. For example, use ControllableInterface as a name for the interface that is used by

the ApplicationManagerComponent.

• Use the first operation defined in the interface as the prefix of the name of a subcomponent

interface.

Figure 55 SCA Interfaces

The interface naming conventions were applied as guidelines and not mandates for the preexisting

interfaces. In most cases, interface names were only changed if they were deemed to have a

profound impact on the readability of the specification and they would not result in a

disproportionate impact on the preexisting SCA compliant code base.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

75
Distribution Statement on the Cover Page applies to all pages of this document.

3.5 SCA Q&A

3.5.1 What elements of OMG IDL are allowed in the PIM?

3.5.1.1 Overview

The SCA Platform Independent Model (PIM) is communicated two ways within the SCA. The PIM

is communicated via the UML models that are documented within the specification and accompany

the document. Per Section 3, the elements of the PIM are also communicated in IDL; “OMG IDL is

the standard representation for the standalone interface definitions within the SCA platform

independent model”.

The IDL representation of the “SCA PIM” is a fixed entity that has its composition determined by

the entity that developed the specification. Consequently, the question posed in this section is

irrelevant because there is no latitude for an SCA user to consider adding additional elements to the

formal “SCA PIM”.

3.5.1.2 PIM Background

The OMG defines a PIM as a representation that exhibits a degree of platform independence so as

to be suitable for use with a number of different platforms of similar type. They suggest a common

technique to employ in order to achieve platform independence is to target a system model for a

technology-neutral virtual machine.

3.5.1.3 PIM usage for SCA developers

Within a model driven architecture approach many transformations can occur within a single

abstraction layer. Therefore a user of the SCA PIM might choose to introduce several layers of

refinement of the SCA constructs as part of the system design and development process while

maintaining a platform independent model. The question of what IDL elements should be used is

very relevant for developers who are planning on refining their PIMs. If a waveform is intended to

be portable across multiple connection-mechanisms, then its IDL PIM should not introduce any

elements beyond those specified in Appendix E- (reference [8]).

3.5.1.4 Future PIM evolution

The projected evolution approach for the SCA PIM is that it will migrate to a model which relies

exclusively on UML. In that scenario the PIM would be fully integrated within a tool-based,

largely automated software development process. System developers within this approach would

execute all of their PIM refinement in the tool and in UML. When the modeler was ready to

transition to a platform specific representation, this approach would treat IDL as a platform specific

realization and the tool would facilitate the mapping to the target technology. Unfortunately we are

not yet at a point where we can utilize this approach because the state of the art tools do not

sufficiently support an automated generation of our desired mappings.

Nonetheless, in this scenario, the PIM would still be governed by the constructs defined in

Appendix E (reference [8]); however the restrictions would be less apparent to the system architect.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

76
Distribution Statement on the Cover Page applies to all pages of this document.

3.5.2 What is the Impact of the SCA Port changes?

3.5.2.1 Overview

One of the SCA changes that has drawn considerable interest has been the refactoring of the port

related interfaces. The specification introduced a new interface, PortAccessor, which consolidates

the Port and PortSupplier interfaces. The new interface represents a change in the means in which

an application or port user interacts with other framework elements or users. However the

modification affords the SCA with several optimization opportunities and there are techniques that

can be used to minimize the impact of the changes.

Figure 56 Port Interface Refactoring

3.5.2.2 Port Revisions

The PortAccessor, interface has three primary distinctions from the earlier SCA configuration, the

interface contains information for both port providers and users, the consolidated port behavior is

now integrated with the parent interface through an inheritance relationship (the earlier Port

interface did not have a defined relationship) and the cardinality of the operations has been changed

to accommodate multiple ports on one invocation.

Consolidating the ports into a single inherited interface eliminates the need for a separate uses port

servant because the behavior associated with the client is now integrated within the interface

realization on the uses side component. Collectively, the changes provide a performance

enhancement because during the formation of connections there is no longer a need to obtain

distinct uses ports because they are part of the component. The revised cardinality on the operations

provide a means to reduce the number of required operation calls during the connection

establishment process because many connections can be made with a single call.

The PortAccessor modifications also pave the way for enhanced connection management

functionality. Integrating the port functionality within the provides side of the interface adds a

release capability on that side. The introduction of which allows a provides port to have full

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

77
Distribution Statement on the Cover Page applies to all pages of this document.

lifecycle support associated with a connection, the implication being that a connection could be

created and destroyed on the provides side, so dynamic port management could occur.

3.5.2.3 Interface and Implementation Differences

The following changes exist on the uses port side:

• the implementation no longer has to create an association with the Port interface,

• the client will need to change any of its Port references to PortAccessor,

• the realized operation names will change from connectPort and disconnectPort to

connectUsesPorts and disconnectPorts.

The logic change associated with the operation change should be straightforward as at will only

need to be amended to accept lists of connection endpoints rather than a single endpoint.

A comparable set of changes will need to be performed on the provides ports:

• the interface definitions will change, which in turn will force an IDL recompilation

• the realized operation name will change from getPorts to getProvidesPorts

As a component of these changes, the new operation will return a void rather than an object

reference and the parameter will no longer be a name, but a connection structure.

3.5.2.4 Implementation Implications

There are steps that can be employed to minimize the impact of the port related changes on an

implementation. Figure 57 highlights some of the similarities and differences of the SCA 4.1 and

SCA 2.2.2 port and connection implementations.

Figure 57 Port Implementation Differences

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

78
Distribution Statement on the Cover Page applies to all pages of this document.

An SCA implementation could choose to create a “new” realization of the PortAccessor interface.

This would be a reasonable approach to take, especially in instances where there are a limited

number of locations where the code would need to be redone. This approach would likely be

palatable in these situations because, in an unenhanced implementation the PortAccessor

operations should not have very complex application logic.

There are a number of other scenarios where there may be more motivation to preserve the existing

Port and PortSupplier implementations and to maximize the backwards compatibility of the SCA

4.1 design. A new PortAccessor realization can be introduced as a façade for the PortSupplier and

Port realizations. In that role, the responsibility of the PortAccessor would be minimal; it would be

responsible for managing the distinctions between the operation signature differences. Secondly,

the developer can take advantage of the fact that many of the new features are optional. Therefore

the differences between the SCA 2.2.2 and 4.1 implementations could be minimized by modeling

the implementation using obtainable ports and not taking advantage of the “port aggregation”

feature, thus minimizing the need to perform extensive code modifications. Lastly, in an approach

that is similar to the façade pattern, the code could retain the Port interface and perform realization

in a language specific PSM. A component and its underlying PortAccessor realization would have

a delegation relationship or association to the Port PSM.

3.5.3 Rationale for DeviceManagerComponent Registration

Requirement SCA216 specifies that upon start up a DeviceManagerComponent has the

responsibility of registering with a DomainManagerComponent.

A DomainManagerComponent is used for the control and configuration of the system domain.

While not part of the original SCA objectives it is the case that in many instances a

DomainManagerComponent can be viewed as platform agnostic and implemented in a fairly

portable manner.

A DeviceManagerComponent manages a collection of BasePlatformComponents which are

targeted for a specific node. A DeviceManagerComponent can be written using a fairly portable

approach or it could be developed in a target specific manner in conjunction with the

BasePlatformComponents that it will be hosting or its target Operating Environment.

Regardless of the selected development approach, the presence of requirement SCA216 allows for

decoupled, either by provider or philosophy, implementations of the two components. This

requirement provides a foundation that guarantees that even if the components are developed

independently, they can be integrated at runtime via the DeviceManagerComponent registering

with the domain via the DomainManagerComponent's associated ComponentRegistry reference.

3.5.4 Rationale for Removal of Application Release Requirement

Earlier SCA versions contained a requirement, equivalent to the following statement: "The

ApplicationManager::releaseObject operation for an application should disconnect ports first, then

release its components, call the terminate operation, and lastly call the unload operation on the

DeviceComponents."

SCA contains the following sequence diagram that demonstrates one scenario describing the steps

associated with an application's release.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

79
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 58 Sequence Diagram depicting application release behavior

1. Client invokes ApplicationManager::releaseObject operation

2. Disconnect ports to application and platform components based upon the SAD

3. Release the application components

4. Terminate the application components' and component factories processes

5. Unload the components' executable images

6. Deallocate capacities based upon the Device Profile and SAD

7. Unregister application components from the component registry

8. Generate an event to indicate the application has been removed from the domain

The consensus was that this requirement was no longer necessary because the well-defined

ordering specified within the requirement did not need to be preserved because the

ApplicationManager interface contains individual requirements for disconnect, terminate, release

and unload behavior and the relative ordering of those calls is dictated by their semantics.

3.5.5 Removal of the UML to Language Mappings

The platform independent philosophy of the SCA lends itself to a countess number of platform

specific representations. The platforms could be specific with respect to processor architecture,

middleware, programming language or other attributes. Earlier SCA versions paved the way for

some of the PIM to PSM transitions to occur by defining a set of UML to programming language

mappings. An ICWG working panel initiated this work to support the definition of a set of SCA

specific, optimized mappings.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

80
Distribution Statement on the Cover Page applies to all pages of this document.

Upon reinvestigation of this decision it became apparent that it ran counter to a number of the other

SCA related objectives related to the use of open architectures and industry Standards. SCA has

decided to use IDL as a platform independent representation and undertaking the responsibility of

defining a new set of mapping rules did not seem wise if we were not going to use them

immediately and the fact that there are other groups, such as the OMG UML committee, that would

be better qualified to define the mapping rules and an associated set of compliant tools.

Ultimately, the existence of a set of UML to language mappings and tools would better serve some

of the SCA’s long term, model based development objectives, but the supporting infrastructure

does not currently exist to initiate a transition to this approach.

3.6 FUTURE ENHANCEMENTS

3.6.1 Component Life Cycle

3.6.1.1 Overview

SCA provides full lifecycle support for some of the Core Framework Control components, e.g.

what happens when DeviceManagerComponents transition into and out of existence, but there is a

lack of concrete guidance regarding the lifecycle of BaseComponent based components. A fully

fleshed out lifecycle for these components would include a set of appropriate states and a

description of the transitions that exist as the components, in particular ApplicationComponents,

are installed or managed and a description of what environmental preconditions are required to

bring a radio platform into existence.

3.6.1.2 BaseComponent State Model <Requesting Additional Input>

This instance of the BaseComponent state model semantics (legitimate operations and transitions)

depends on the presence of the LifeCycle interface and support of the CONTROLLABLE flag.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

81
Distribution Statement on the Cover Page applies to all pages of this document.

Figure 59 Component Life Cycle

[Note: Soliciting community for additional content to be added here. Please submit input to jtrs-

sca@spawar.navy.mil.]

4 ACRONYMS

Abbreviation Definition

AEP Application Environment Profile

API Application Program Interface

CF Core Framework

CORBA Common Object Request Broker Architecture

CORBA/e Embedded Real Time CORBA

COTS Commercial Off The Shelf

CPFSK Continuous Phase Frequency Shift Keying

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

82
Distribution Statement on the Cover Page applies to all pages of this document.

Abbreviation Definition

CVSD Continuously Variable-Slope Delta modulation

DCD Device Configuration Descriptor

DLC Data Link Control

DSP Digital Signal Processor

DTD Document Type Definition

FM3TR Future Multiband Multiwaveform Modular Tactical Radio

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPS Global Positioning System

ICWG Interface Control Working Group

ID Identifier

IDL Interface Definition Language

IEEE Institute of Electrical and Electronic Engineers

JPA JTRS Platform Adapter

JTNC Joint Tactical Networking Center

JTR Joint Tactical Radio

JTRS Joint Tactical Radio System

LwAEP Lightweight Application Environment Profile

MAC Media Access Control

MILCOM Military Communications Conference

MIPS Million Instructions Per Second

MHAL Modem Hardware Abstraction Layer

MOCB MHAL On Chip Bus

OE Operating Environment

OMG Object Management Group

ORB Object Request Broker

PIM Platform Independent Model

POSIX Portable Operating System Interface

PSM Platform Specific Model

RPC Remote Procedure Control

R-S Reed Solomon

SAD Software Assembly Descriptor

SCA Software Communications Architecture

SCD Software Component Descriptor

SDR Software Defined Radio

SPD Software Profile Descriptor

TCP-IP Transmission Control Protocol (TCP) and Internet Protocol (IP)

TD Technical Director

TDMA Time Division Multiplexed Access

UI User Interface

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

SCA Specification User’s Guide Version: 4.1<DRAFT>

30 November 2015

83
Distribution Statement on the Cover Page applies to all pages of this document.

Abbreviation Definition

UML Unified Modeling Language

UOF Unit of Functionality

WF Waveform

XML eXtensible Markup Language

